CRMs design elements

Contents

• The security of supply problem
 – Classic reasons behind the need for CRMs
 – What do stakeholders seek with a CRM?
 – CRMs mechanisms design elements

• Design elements of CRM
 – The product
 – Targeted market (buying side and the selling side)
 – Price vs Quantity (defining the requirements)
 – Trading mechanism

• Advanced design of the RO mechanism
The security of supply problem
Classic reasons behind the market failure (i)

• Ideally generators can fully recover their long-term costs
 – Even although prices are based solely on operating short-term costs

• Hypotheses marginal pricing theory under perfect competition
 – An efficient short-term market
 • Competitive demand participation

• Competitive generation participation

• Efficient pricing rule

 – An efficient long-term market
 • Risk is allocated efficiently among market agents (supply and demand)
The security of supply problem
Classic reasons behind the market failure (i)

- Ideally generators can fully recover their long-term costs
 - Even although prices are based solely on operating short-term costs
- Hypotheses marginal pricing theory under perfect competition
 - **An efficient short-term market**
 - Competitive demand participation
 - Demand does not set prices: lack of participation, caps, OS intervention
 - Competitive generation participation
 - Offer caps, entry barriers (vertical integration), etc.
 - Efficient pricing rule
 - Costs are not convex and pricing rules are not optimal in some cases
 - **An efficient long-term market**
 - Risk is allocated efficiently among market agents (supply and demand)
 - Generators are risk averse and most consumers are not
 - Others: continuous investment and no economies of scale
The security of supply problem

Classic reasons behind the market failure (ii)

- The problem is long-term uncertainty not short-term volatility risk
 - Short-term volatility is not a problem for system adequacy

- The “missing planning” problem: low carbon policies have boosted the regulator intervention in the system capacity expansion

The security of supply problem

What do regulators and generators seek with a CRM?

• What does the regulator seek?
 – Secure the electricity supply
 • Attract capacity & guarantee an efficient resource management
 – Hedge the consumers risk (stabilize prices)
 – A tertiary objective: enhance competition
 • Open the market to new entrants (national or cross border)
 • Some products help mitigating market power

• What do generators want?
 – A major objective: hedge their risk
 • Hedge price risk (stable signal)
 • Have the hedge or additional income defined before the plant is built
 – If short-term signal is not optimal (price cap, pricing rules, etc.)…
 … an additional source of income may be needed
The security of supply problem
CRMs design elements

- Main design elements of CRMs

Capacity Markets
Bilat. Capacity Markets
Capacity Payments
Long term energy auctions
Reliability options
Strategic reserves
CRMs design elements

Product

• The most important design element
 – Its acquisition should lead the system to the efficient scenario

• Three main components that can combine in the definition

 Financial contract (forward, option, …) → PRODUCT ← Physical energy delivery (penalties)

 Firm supply

• Examples of products:
 – Purely financial contract
 – Firm supply
 – Financial + firm supply
 – Financial contract + physical delivery + physical back up
CRMs design elements
Product: Reliability Option (i)

- The (financial) Reliability Option

- Purely financial (no firm supply, no penalties) -> no experience
 - Hedges price risk (both for demand and generation)
 - Financial entities can ideally sell this product
 - Physical delivery is not guaranteed
CRMs design elements
Product: Reliability Option (ii)

• The (financial) Reliability Option

- Purely financial (firm supply but no penalties) -> Colombia
 - Hedges price risk (generator and the regulator)
 - A physical back up is required
 - The price of the RO can be higher than the value of the financial product
 - Physical delivery is more likely to be delivered
CRMs design elements
Product: Reliability Option (iii)

- The (physical) Reliability Option

- Physical Reliability option -> New England
- The penalty increases the incentive for physical delivery
 - The downside of the penalty
 - Increases the investor’s risk (increases the premium asked for the RO)
CRMs design elements
Product

• Time terms of the contract

- Lag period: allows to fix the conditions before installing the plant
- Contract duration: sufficient durations reduce the investor’s risk

– Optimal value for these parameters are technology-dependent
CRM design elements

Targeted market

- **Buyers**: demand represented by the regulator
 - All the demand
 - Who should pay? -> All demand (avoid cross subsidies)
 - Only a segment of the demand
 - Important to define products that are enjoyed by the segment of the demand buying the product (avoid free riding)
 - Who should pay? -> The segment of the demand represented

- **Seller**: who can sell the product?
 - All technologies or just some (or one) technology
 - How can demand response participate?
 - Only new investments or all units?
 - Usually different conditions apply to new investments and existing units
CRMs design elements

Quantity vs Price: defining the requirements

- Market-based mechanisms
 - Price: the regulator fixes the price (market forces decide the quantity)
 - Quantity: the regulator fixes the quantity (market forces the price)
 - Price-Quantity curve

- Need to convert a reliability standard into a requirement

- e.g. Colombia, New England, PJM…
CRM design elements
Mechanism to purchase the product

• Bilateral vs. auction
 – Auctions are more transparent
 – Enhance liquidity

• Centralized vs. decentralized
 – Centralizing the acquisition
 • allows exploiting economies of scale
 • at least does not add barriers to new entrants (vertical integration)
 • minimizes free riding

• Single node or zonal
 – Liquidity versus efficiency
CRMs design elements
Mechanism to purchase the product

- Zonal auctions
 - In PJM’s RPM the clearing price for each Locational Deliverability Area (LDA, import constrained zones) is determined using an optimization-based algorithm

- In ISO-NE’s FCM a simplified clearing algorithm
 - Capacity zones are designated in advance
 - FCA begins with a single zone

Source: PJM and ISONE
The security of supply problem
CRMs design elements

• Main design elements of CRMs

The design elements inevitably affect the final outcome
The devil is in the details: success or disaster
The regulatory mechanisms

The reliability option mechanism

• Implementing a CRM mechanism is never easy

• In the reliability option mechanism
 – How to set the strike price
 – The reference market
 • When is a scarcity detected? (real-time, hour-ahead, day-ahead)
 • What if there is not market? What if there are multiple markets?
 – Consideration of previous bilateral contracts
 – How to avoid the “wait for the tender effect”?
 – How do we take into account the interconnections?
The regulatory mechanisms
The reliability option mechanism

- The problem in the regional context
 - Physical commitments are important in the adequacy problem
 - Let us imagine that the CRM-system has contracted physical reliability options from neighbouring country…
 - … and the PCR allocates all transmission capacity in the short-term

\[
\begin{array}{c}
\text{NS-I} \\
\text{CRM-system} \quad \text{Import} \quad \text{Cross border CRM-seller} \\
\text{S-I} \\
\text{CRM-system} \quad \text{Import} \quad \text{Cross border CRM-seller}
\end{array} \quad \begin{array}{c}
\text{NS-E} \\
\text{CRM-system} \quad \text{Export} \quad \text{Cross border CRM-seller} \\
\text{S-E} \\
\text{CRM-system} \quad \text{Export} \quad \text{Cross border CRM-seller}
\end{array}
\]
CRM

References

Available at: http://www.iit.upcomillas.es/batlle/Publications.html
ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICA