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Disclaimer 

Economic Consulting Associates (ECA) shall not have any liability to any third party in 
respect of this report or any actions taken or decisions made as a consequence of the 
results, advice or recommendations set forth herein. 

This report does not represent investment advice or provide an opinion regarding the 
fairness of any transaction to any and all parties. This report does not represent legal 
advice, which can only be provided by legal counsel and for which you should seek 
advice of counsel. The opinions expressed herein are valid only for the purpose stated 
herein and as of the date hereof. Information furnished by others, upon which all or 
portions of this report are based, is believed to be reliable but has not been verified. No 
warranty is given as to the accuracy of such information.  

This Report describes model simulations for future years. ECA accepts no responsibility if 
outturns differ from the simulations and no obligation is assumed to revise this report to 
reflect subsequent changes, events or conditions
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Executive summary 

Scope of work 
In September 2019 ECA was appointed by the Regulatory 
Authorities (RAs) to complete a backcast of the current SEM 
PLEXOS model (2018-2023) and to update and extend the 
validated SEM PLEXOS model to cover the period 2019 – 2025. 
 

Data gathering, 
stakeholder 
engagement and 
quality assurance 

Data was gathered from generators, TSOs, the RAs and 
external sources to ensure the most recent information is used 
in the model. This included technical generator data, 
commercial generator data, future outlook projections, 
commodities, fuel adders and the most recent wind and 
demand profiles. 
 
Throughout the project, engagement with market participants 
was carried out through emails, meetings and an industry 
workshop on the 9th of December 2019. This ensured that 
participant comments and concerns were captured and 
incorporated where appropriate in the validation exercise. 
 
Diligent data quality assurance has been carried out 
throughout all stages of the data gathering processes by 
validating data for completeness and correctness.  
 

Model validation to 
include latest data 
and extend model to 
2025 

Following the data gathering exercise the earlier model was 
updated and extended to 2025. This incorporated the latest 
projected information such as retirement dates, 
commissioning dates, demand projections and wind capacity 
projections. Demand and wind profile data was likewise 
updated to reflect the most recent data available. Outages were 
updated with the TSOs latest projections and extended to 2025. 

Sensitivity analysis was carried out to test some of the 
modelling parameters such as start-time, look-ahead, PLEXOS 
version and uplift algorithms. Similar analysis was carried out 
on the backcast before recommending the final adjustments to 
be carried across to the validated model. 

Backcast to verify 
model robustness 
against I-SEM 
historical market 
outcomes 

This is the first model backcast to be carried out since the I-
SEM launch in October 2018. The period for the backcast is 
limited in length and recently changed markets usually 
require some years to mature and settle. As part of this 
exercise, market condition inputs were set to match historical 
actual values in the model including demand, wind and 
commodities.  

Where the backcast analysis identified clear options for 
improving the model then these were recommended as part of 
the overall model update. One of the modelling approaches 
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examined and adjusted extensively was the modelling of Great 
Britain (GB) and interconnectors as the previous modelling 
approach gave poor representation of interconnector flows. 
 
However, for some key areas for potential improvement a 
single year of data was insufficient to recommend substantive 
changes. These relate to instances of high market prices 
correlated with low or volatile wind generation, to the benefits 
of MIP implementations and to changes to the uplift and mark-
up methodologies across the summer months. Each of these 
aspects had a strong seasonal component in the 
appropriateness of modelled outcomes. In these cases, the 
outcomes and potential causes for these are discussed, but no 
change implemented. It is recommended these issues to be 
monitored going forward to identify whether or not a 
repeatable and predictable pattern emerges.  
 

Recommendations 
from backcast and 
validation exercise 

The primary model updates include the update of the technical 
and commercial parameters to the latest verified values. The 
percentage of generators which had changes included 36% for 
heat-rates, 82% of start and VOM costs, 24% of operational 
costs. All updates from the most recent Generation Capacity 
Statement (GCS) 2019 – 2028 are carried over as they represent 
the latest and most robust outlook from the TSOs. 
The resulting recommendations from the validation and 
backcast include: 

 Changing the model start-time from 6am to 11pm. 

 Updating the PLEXOS model version from 7.3 to 
8.1. 

 Adopting a new GB modelling approach which 
follows a heat-rate regression against GB gas 
prices with horizontal segmentation and 
intermittent generation included. 

 Removing wheeling charges from the model. 

The following settings were assessed, and the current 
methodology recommended to be retained: 

 6-hour look-ahead 

 Korean uplift algorithm  

 Current mark-up methodology 

 RR modelling methodology 
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1 Introduction 

1.1 Scope of work 

In September 2019, ECA was appointed by the Regulatory Authorities (RAs) to complete a 
backcast of the SEM PLEXOS model and to update and extend the validated SEM PLEXOS 
model to cover the period 2019 – 2025.  

Similar model validation exercises have been carried out on an annual basis by the RAs. 
The two most recent model validations were carried out in 2017 and 2018. The earlier of 
these explicitly considered the prospect of market changes that would be seen in the 
Integrated Single Electricity Market (I-SEM), the latter of these was undertaken after the I-
SEM market trials (associated with I-SEM implementation) but did not use the trial market-
data. When considering model settings both exercises were constrained by the 
unavailability of operational market data.  

For these same reasons a backcast exercise comparing modelled outcomes against real 
market data had not yet been undertaken since the I-SEM launch on the 1st of October 2018.  

1.1.1 Overview of the I-SEM PLEXOS model 

The RA’s I-SEM PLEXOS model is a representative model of the all-island electricity system 
across Republic of Ireland (ROI) and Northern Ireland (NI).  

The model style is a generation cost driven model1, where generator bids and offers are 
assumed to be formed from a combination of unit-based underlying fuel, running, and start 
costs alongside an incentive to make a profitable margin on any generation sold. On 
aggregate this model style typically provides a strong representation of the underlying 
long-run cost drivers for the market but does not explicitly take into account the risk-
exposure of individual generators and retailers to different market price/volume outcomes. 
Therefore, it would be reasonable to see a fairly strong representation of the aggregate 

 
1 The key alternative traditional model-types would be 1) a model incorporating theoretical market-
power based behaviors, examples of these include Bertrand and Cournot models, 2) a reduced form 
model which predicts outcomes based solely on external market changes impacting the system 3) 
statistical models (e.g. time-series modelling based on historical outcomes) and 4) machine-learning 
algorithms. In the SEM market-power based behavior models produce unrealistic results as exercise 
of market power is mitigated in practice by regulatory intervention and the threat of further 
regulatory intervention. All three other potential options would not be advisable for modelling the 
SEM as they could not produce robust results when trained solely on a single year’s worth of market 
data.  
 
An alternative variation would be to incorporate portfolio modelling into the model framework – 
this assumes market behaviours are impacted by the portfolio of contracts and generation facilities 
owned by each company, and their corresponding exposure to prices. This assumes that generators 
will deploy their generation assets so as to optimise their profitable returns on their full portfolio, 
not treating each asset independently. This may not be appropriate for the SEM given the unit-based 
nature of CRM payments. Likewise, this would require a significantly increased level of public 
contract visibility in order to maintain and develop such a model.  
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market outcomes. The model is solved by being broken into subproblems, each subproblem 
solution represents a daily market outcome at an hourly granularity. A Rounded-
Relaxation (RR) style unit-commitment algorithm provides unit-commitment decisions for 
each unit across each day. The forward-looking model uses five wind and demand profiles 
to construct a range of possible behaviours and expected future outcomes. 

The model has several key roles in the market including: 

 Capacity Remuneration Mechanism (CRM) modelling: 

 Directed Contracts (DCs) modelling. 

 For strategic analysis by the RAs. 

As part of this exercise the model is to be validated, both in terms of inputs and model 
settings; and based on a backcast against actual market data. 

Box 1  Reference to SEM vs I-SEM 

Throughout the document there is reference to SEM and I-SEM. Although I-SEM refers to the 
implementation of the “Integrated Single Electricity Market” which went live on the 1st of October 
2018, the market thereafter is still referred to as the “Single Electricity Market” after this date. For 
the purposes of this document it is assumed that SEM refers to the period prior to the go live date 
in October 2018 and I-SEM to the new market arrangements since then. 

1.1.2 Input data validation 

This exercise has included a review and validation of the input data which underpins the 
representation of the I-SEM market fundamentals in the model. These are a set of core 
generation profiles, load profiles, costs and technical characteristics which will drive 
market outcomes.  

The desired outcome when refreshing and reviewing generator data is to ensure that, 
wherever possible, the model data strongly aligns to how participants view their own costs 
when making commercial decisions about how to offer to the market. The trading methods 
used to recover these costs alongside a profitable margin may differ between participants. 
Nonetheless across the wide variety of market conditions and possible scenarios any 
trading strategy must ultimately align with these revenue requirements to ensure a 
company maintains profitability. 

When refreshing system data, the core goal is ensuring a reasonable representation of net 
demand2 which is exposed to the I-SEM market mechanisms. In this case the method 
includes updating representations of aggregate system wind, demand, embedded 
generation and interconnector availability. This relies on the expectation that any over-
estimate of demand presented to market will be compensated for by the inclusion of the 
corresponding embedded generation or wind which will meet that load requirement so that 
it does not get cleared through the market. 

 
2 Net demand is the total supply needs procured through the centralized system, after local 
elements such as embedded generation and losses have been taken into account.  
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Although commodity data updates are performed as part of the input validation, these 
comprise only a small component of the model validation exercise. It is important to update 
local elements which differentiate commodity pricing such as fuel adders. Nonetheless, 
many of the fuel commodities which are priced into the model are exposed to significant 
market volatility and will need to be regularly updated by model users to ensure modelled 
market results reflect current market conditions. 

Key input datatypes that have been validated and updated where necessary are presented 
in the following table. 

Table 1  Input data validation categories 

Category Changes 

Generation plant data 

Plant commissioning dates 

Plant retirement dates 

Fuel types (primary and secondary) 

Capacity 

Heat-rates 

Forced outages 

Planned outages 

Mean time to repair 

Ramp rates 

Min up and min down times 

Start-up characteristics 

Variable Operation and Maintenance (VOM) costs 

Operational costs 

Storage and Hydro 

System data 

Wind (capacity outlook, profiles and capacity factors) 

Demand (peak and total demand outlook and profiles) 

Interconnectors (including contracted capacities) 

 Demand Side Response Units (DSUs) 

Transmission Loss Adjustment Factors (TLAFs) 

Embedded generation 

Commodities 

Fuels 

Exchange rates 

Carbon assumptions 

Fuel adders 

Updates to reflect changes in plant fuel arrangements 

 

The input validation is focussed on the building blocks as presented in Table 1, which form 
the foundation of the model. The focus is on ensuring there is a sound basis for commercial 
decision-making, and that data is well-aligned with participants own estimates of their 
willingness to encounter costs, alongside the transmission and market operators own 
estimates of the capabilities of the interconnected system. 
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1.1.3 Backcast validation 

The backcast contrasts with the input validation as it takes a top-down approach to model 
validation. The key arbiter of success is whether or not the modelled results make a 
reasonable approximation of the aggregate system results (namely price, generation, 
interconnector flows and aggregate generation by fuel) from the live market over the 
specified historical time period. 

Typically, a backcast would be undertaken on a multi-year sample before introducing 
significant model changes. This ensures that modelling analysis, and market behaviour 
analysis can eliminate the impact of one-off conditions on participant behaviours such as: 

 Low, medium or high seasonal demand profiles in particular years. 

 Low, medium or high seasonal wind profiles in particular years. 

 Years with unusual generator or system characteristics, such as significant plant 
outages or interconnector limits. 

An appropriate time-sample for analysing the fundamental drivers of market outcomes 
under steady-state and across a range of market conditions would be between three to five 
years. 

However, since the I-SEM launch was just over 12 months ago, in this case the calibration 
to market outcomes includes only 12 months of data. Over this range it would be reasonable 
to see only a moderate representation of the aggregate annual market results.3  

Beyond this, where significant variation is seen, there is now an opportunity to examine 
some of the more detailed initial bid and offer data. This data needs to be treated with 
caution when considering any changes to the modelling methodology as it is a limited 
snapshot under a particular set of market conditions. There is therefore a significant risk of 
overfitting the model with market conditions seen to-date rather than the range of market 
outcomes which would be expected over a range of future market conditions.  

1.1.4 Sensitivities calibration 

As part of the backcast exercise historical inputs are used to test the model’s performance 
against actual I-SEM market data (price, generation by fuel type, interconnector flows etc.). 
This includes the calibration and testing of certain sensitivities (refer to Table 2). These are 
typically incremental improvements, rather than large changes. However, they can have a 
significant impact on the model solution. 

Where potential changes are identified they must first be verified to be driven by market 
fundamentals. Then potential changes must be proven to demonstrably show an 
improvement to the model outputs against actual historical data over a range of potential 

 
3 Based on international experience for a backcast analysis the differences between annual 
aggregate market results and modelled results would be expected to sit roughly within a +/-5% 
threshold over a 3-5 year time-frame once event-based outliers are taken into account. Since this 
calibration is over a 1 year time-frame, it is reasonable to see higher volatility than this. 
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system outcomes. Only once they have passed both of these gates are they considered 
candidates for inclusion in the newly updated I-SEM PLEXOS 2019-2025 model.  

To calibrate the model, a number of market settings are adjusted to different likely values. 
The impact of these changes is then retested on the solution across both the forward-looking 
model and the backcast. This allows quantification of the impact a change would have on 
the accuracy of historical market outcome replication. At the same time by testing the 
proposed change against the forward-looking model it is possible to gain greater insight 
into how the influence of that sensitivity on market solutions may evolve as the make-up 
of the market itself changes.  

Examples of the sensitivities explored are summarised in the following table. Any accepted 
changes are integrated into the backcast and forward-looking models. 

Table 2  Examples of sensitivities tested 

Parameter Sensitivity tested 

Start-time 
Tested the update of the start-time from 6am to 11pm to align with actual Day 

Ahead Market (DAM) conditions 

Look-ahead Explored smaller and larger values of the look-ahead currently set at six hours 

PLEXOS version Tested the effect of upgrading from PLEXOS version 7.3 to 8.1  

Uplift Tested the effect of differing uplift methodologies 

Solver mode 
Explored the impact of using Rounded Relaxation (RR) or Mixed Integer 

Programming (MIP) 

Great Britain (GB) modelling Explored different methodologies of modelling the GB market 

1.1.5 Fundamental market modelling philosophy 

Since the market plays an active role in long-term capacity remuneration decision-making 
it is most appropriate for it to continue to maintain the pure economics perspective 
following long-term steady state cost behaviours (and associated uplifts). This allows it to 
provide a sound basis for long-term pricing trends and future expected dispatch patterns, 
including those for future proposed plant.  

The reasons for this are partially based on an underlying economic philosophy, and 
partially based on pragmatic considerations. 

In terms of the modelling philosophy over the long-term, it is reasonable to expect the 
pricing and offer behaviours which are exhibited in the market to reach a steady state which 
allows generators to cover their short run marginal costs and underlying long-term costs. 
Although short-term trading behaviours are likely to exhibit greater variance in achieving 
this outcome, the cost drivers remain constant. Correspondingly, the required revenue 
implicit in different market behaviours will also remain constant. The short-term trading 
behaviours will necessarily change as the traders, trading managers, and portfolio positions 
of different participants change. The core cost drivers will continue to be driven by the same 
fundamental elements. 

On the pragmatic side, even if you assume that short term trading is likely to reach and 
maintain a steady state of behaviours, then for each of these traders, a significant quantity 
of data will have to be maintained and reviewed regularly to create models which can 
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represent the core behavioural drivers. This would require multiple years of trading data 
under a range of conditions. For an existing generator this may eventually become possible 
once the changes from I-SEM have been in operation for an extended period of time.  

Even then this may not be an advisable solution unless a highly automated data solution 
could be found. This is due to the high levels of model maintenance that would be involved. 
Likewise, this level of data will also never be reasonably available for proposed new 
generation/storage/DSUs/assetless units etc. across the forward-looking timeframe.  

For these reasons, significant alternatives to the under-pinning modelling philosophy were 
not considered as this style of substantive change as out-of-scope for the current exercise. 
All model inputs and outcomes were evaluated within the paradigm of long-term steady-
state costs as the primary driver of aggregate market offer and bid behaviours. 

1.2 Approach and methodology for validation 

In order to address the tasks described above, this assessment was carried out using a 
phased approach. The project was split into three phases as illustrated in the figure below, 
engaging with stakeholders at key points across the process. 

Figure 1  Methodology overview 

 

1.2.1 Data collection 

The initial stage across both phases was focussed on data collection. The data collection 
exercise included sourcing data from generation market participants, from the system 
operator, market operators, interconnector owners and the RAs. A high-level breakdown 
of data sourcing is shown in the table below: 
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Table 3  Data sourcing 

Category Data collected Sources 

Generator 
technical and 
commercial data 

Commissioning and retirement dates 
Generators, Generation Capacity 

Statement (GCS) 2019, capacity and 
DS3 auction results 

Fuel type Generators 

Capacity Generators 

Heat-rate curve Generators 

Forced outages Generators 

Ramp rates, min up and min down times Generators 

Start characteristics Generators 

VOM costs Generators 

Fuel adders Generators and public data 

Storage technical details 
Generators, capacity auctions, and DS3 

auction results 

System data 

Wind profiles TSOs 

Wind capacity outlooks GCS 2019 

Demand profiles TSOs 

Peak and total demand outlook GCS 2019 

Interconnector (historic flows and contracted 
capacities) 

TSOs and RAs 

Planned outages TSOs 

DSUs 
Capacity auction results and historical 

bid offer data from RA Market Modelling 
Unit (MMU) 

TLAFs TSOs 

Embedded generation TSOs 

Commodities 

Fuels RAs  

Carbon RAs  

Exchange rates RAs  

Fuel adders Generators and published data 

Historic data (for 
backcast) 

Wind TSOs and RAs MMU 

Demand TSOs and RAs MMU 

DA Commodities and exchange rates RAs  

Outages and output restrictions TSOs and RAs 

Historical interconnector DAM transfer 
capacities 

TSOs 

Integrated Single Electricity Market (I-SEM) 
and GB DAM wholesale electricity prices 

RAs 

Interconnector flows TSOs 

Generation per fuel type and per unit TSOs and RAs MMU 



Introduction 

 

ECA - Input Validation and Backcast Report 10  

1.2.2 Data validation and consolidation 

Phase 1 and Phase 2 both included significant data requirements from an array of sources. 
Following data collection, analysis of the supplied data was performed, alongside analysis 
of how well it fit with the existing model and market environment. To validate the 
alignment of the data provided with wider market principles in most cases inputs primarily 
required comparison to data to available secondary sources to ensure strong alignment. 
Where an appropriate secondary source was not available, data was evaluated against 
typical or historical values for the datatype.  

1.2.3 Initial findings (input validation) 

To develop the initial findings, the aggregate impacts of the proposed data changes were 
examined. This analysis for Phase 1 was focussed on identifying whether the updated 
values continued to be an appropriate representation of system drivers. This primarily 
focussed on exploring the scale and impact of each incremental change to the model data 
characteristics. Where value changes had little impact, or the impact seen was predictable 
and reasonable based on changes to the data then it was viewed as a reasonable outcome 
and incorporated into the model.  Based on high-level bilateral stakeholder conversations 
a set of expected market behaviours were identified alongside insight into whether or not 
the outcomes broadly aligned with stakeholder observations of the market to date.  

1.2.4 Initial output calibration  

The Phase 2 backcast initial outcome validation followed a similar approach to the input 
validation in Phase 1 but instead of calibrating changes against existing modelled outcomes, 
the calibrations were against historical market outcomes. Model inputs and parameters are 
then calibrated to simulate historical market behaviour in the most appropriate way whilst 
maintaining reasonable model running times. Where significant adjustments were made so 
that backcast outcomes were more strongly aligned with market outcomes then those 
changes were also evaluated for inclusion in the forward-looking model data inputs. 

1.2.5 Output calibration/identify and explore areas of poor 

calibration 

Once the high level aggregate initial output validation was complete the focus for Phase 2 
shifted to identifying specific areas of poor calibration in order to review and revise the 
approach taken. This included a focus across particular time periods, or across particular 
system elements. The most significant example of this was the case of interconnector flows 
to and from GB. The backcast comparison identified that these were significantly less well-
calibrated to market outcomes than other elements. A number of different possible model 
representations were identified to reflect the same underlying system data and reviewed to 
evaluate the benefit of each of the possible methods.  

As part of this stage of calibration, several sensitivities on model settings have been 
explored, including evaluating the impact of changes to look-ahead values, start-time and 
various other system representation elements. 
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To facilitate stakeholder input, an industry workshop (9th Dec 2019) was undertaken during 
this stage in the process. This enabled both identification of stakeholder concerns regarding 
the work to-date, and valuable insight into some of the calibration issues being addressed. 
Based on stakeholder feedback aspects of the model which required further exploration and 
analysis were identified. 

1.2.6 Initial findings (backcast) 

Developing the initial findings for the backcast included an evaluation of the range of 
proposed options for different data elements. Each of these were evaluated against their 
strength of fit for market behaviours over the historical time period as well as their 
maintainability. Where relevant the impact of proposed changes on modelling times was 
also explored. 

1.2.7 Finalisation of the model and model reports 

Once a reasonable range of calibration options for each of the key areas was identified, the 
model validation was completed enabling the drafting of the model validation report and 
the confirmation of the final model settings.  

1.3 Quality assurance 

Data forms the backbone of this modelling exercise and therefore a diligent quality 
assurance has been carried out throughout all stages of the data gathering processes. 

Generator technical and commercial data 

Templates were sent out with instructions to all generator companies to provide their most 
recent and accurate technical plant data per unit. Likewise, some cost-based data for 
generation units was also collected from generators through these templates.   

A template requesting any views on fuel adder updates was also provided, as well as a 
wider set of questions around the relationship between generator operational requirements 
and their commercial drivers (e.g. contracts, LRSAs etc.).  

The data collected from this process was reviewed for reasonableness. The focus was firstly 
whether any changes to existing data were reasonable and had a strong underpinning 
rationale. The secondary focus was evaluating all data held for different generation plants 
(including that which was unchanged) to ensure they were reasonably closely aligned to 
standard industry representations of similar plants. Where data provided deviated 
significantly from expected ranges, clarification was requested on the reasoning to ensure 
best possible representation in the model. The final data collated was then provided to the 
RAs for their review. 
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System Data    

Up-to-date system data was obtained from official market sources including System 
Operators EirGrid and SONI as well as the Market Modelling Group (MMG) and the 
Market Monitoring Unit (MMU) teams of the RAs. Continuous engagement with these 
stakeholders allowed for the gathering of the most recent and relevant data both for 
validation and backcast purposes. Where possible data was reviewed against additional 
external secondary sources such as the European Network of Transmission System 
Operators for Electricity (ENTSO-E), market monitoring frameworks in GB, and/or market 
sources from a second market operator organisation. 

Input Processing 

All data received and used was validated to ensure it aligned with expectations before 
being inputted into the model. This included sense checks against historical or previously 
used data, as well as identification of erroneous or incomplete data. Where data with 
inconsistencies was identified it was further investigated with the source and validated 
before application.  

Moreover, once the data updates were input into the model, then each set of updates were 
tested individually in step changes to ensure that on aggregate the system impacts aligned 
with overall expected system outcomes. 
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2 I-SEM 

The I-SEM launch has significant impacts on the model validation across a variety of areas.  

2.1 Bids and offers 

The I-SEM launch has fundamentally changed the way participants bid and offer into the 
electricity market, both in terms of the structure of these bids and offers, and in terms of the 
content.  

The structure of bids and offers has shifted significantly as the new market structure 
introduced a Day Ahead Market (DAM) and intra-day markets. This introduces changes to 
the key times at which traders must make crucial tactical decisions, and the level of 
knowledge they will have when making those decisions. Likewise, these allow traders to 
incrementally reveal the nuances and elasticity of their individual supply and demand 
curves. 

An additional structural component which was introduced by the I-SEM is that participants 
are provided with the option of using a complex bid-type with a minimum income 
condition specified as a separate component. This element provides flexibility for 
participants to simultaneously signal price differentiation between different hours of the 
day, and also signal their unwillingness to incur start-costs in a day if it will only provide a 
low total income across the day.  

A key change in terms of bid and offer content in the I-SEM is that participant offers are no 
longer explicitly drawn from a simple generation cost basis (plus uplift) but can be set by 
participants based on their strategic pressures. This allows generators greater flexibility in 
determining and implementing different bid strategies. 

2.2 Scheduling algorithm 

The market clearing engine for the newly established DAM is the EUPHEMIA algorithm. 
The EUPHEMIA algorithm is used exclusively for establishing the DAM schedule. This 
algorithm is already operating across a number of different European electricity markets. 

Alongside fundamental algorithmic differences, one of the key changes resulting from the 
use of EUPHEMIA is that there is greater simplicity in how market participant information 
is presented to the scheduling algorithm. Specifically, there is no explicit consideration or 
documentation of generator technical characteristics or associated commercial parameters.  

It is assumed that participants will manage their own risks and costs associated with 
elements such as start costs, no-load costs and minimum run times. The bids and offers 
which are then presented to the market by participants will have internalised some 
commercial estimate of the potential costs these elements could present. This can either be 
through the mechanism of sculpting simple hourly orders (represented as price/quantity 
pairs for a given hour) or with the additional component of a minimum income condition. 
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The minimum income condition represents the minimum aggregate income a generator 
requires to be dispatched for within the daily solve in order to be included in the market 
dispatch solution. If this threshold is not met, then that generating unit will not be 
dispatched into the DAM scheduling outcome. 

While the move to the EUPHEMIA algorithm means a stronger alignment of the SEM with 
other European markets there are still unique characteristics. The most notable of these is 
that participants continue to be required to shape all bids at a unit-based level. The majority 
of EUPHEMIA based markets additionally allow portfolio-based bidding. The continuation 
of unit-based bidding however will also result in a continuation of the focus on unit-based 
costs. The management of the risk and cost element trade-offs for these has shifted from the 
market dispatch algorithm onto the participants themselves. 

The PLEXOS model does not attempt to directly reflect the different EUPHEMIA order-
types, but instead the underlying costs which will also drive the price/quantity pair 
formation which participants bid into EUPHEMIA. These differences between the market 
dispatch algorithm and the tools used to replicate the outcomes are common across a wide 
variety of international markets, and despite the difference in algorithm will usually result 
in very similar price and generation outcomes. For the DAM this appears to be the case 
under most (but not all) market conditions, for further detail see sections 7 and 8 for the 
backcast results. 

2.3 Impact on model validation 

With the launch of the I-SEM the structure of the electricity markets changed substantially, 
and so there is a clear discontinuity between historical market-based data sources before 
and after the I-SEM launch. The most notable of these market-based outcomes would be 
historical market offers and historical market prices. Nonetheless the physical supply and 
demand elements which underpin the market continued to be similar – the generation fleet 
and consumers are still broadly the same.  

As a result of these changes when validating the model inputs and outputs it was evident 
that pre-I-SEM data including historical bids/offers, dispatches and proportion of different 
sources offered through the market are no longer appropriate for use in validating the 
model. Although some of these data-sources can still be used as a high-level sense-check 
these data sources are based on a different set of market structures and should be 
approached with caution. 

As the model still requires a range of historical demand/wind scenarios it was necessary to 
use a set of historical sources which reflect the gross quantities of each of these elements 
which will drive the market outcomes.4 These data-sources will reflect gross demand, gross 
wind values and gross embedded generation, each of which will drive some component of 
the price formation. Once these gross inputs elements net off against one another then a 
residual supply and demand curve will be formed – this includes the core price-setting 
market elements. The set of costs, risks and value associated with these generation supply 
curves are the same as those which underpin bid formation in the DAM solve. The marginal 

 
4 In this instance gross system inputs are represented by whole-of-system actual data as developed 
from SCADA readings or directly supplied by EirGrid. 
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price-setter from the resultant supply curves will therefore be equivalent. Thus, the price 
formation in the model and in the market will resolve in a similar fashion. This expectation 
was further validated by a backcast comparison between the PLEXOS model outcomes 
using historical gross inputs, and a model using DAM offered inputs for wind and demand. 
The results were very similar in terms of accuracy in replicating historical market outcomes.  

The model validation and backcast were necessarily limited in accuracy due to the 12-
month timeframe since market launch. This means that the new market data sources are 
not yet very robust. 

 There has only been a single sample of each month’s trading behaviours, which 
gives a sample of between 19-23 workdays, and 8-12 non-workdays for each 
month. 

 The majority of stakeholders spoken to during the input validation did not 
believe the market had yet reached steady state outcomes. Market participants 
can reasonably be expected to exhibit learning behaviours during this time 
period as the seasons change and the demand and wind pressures on the 
market likewise evolve. They will also be observing and learning from the 
behaviours shown by other participants.  

 Given the small sample of behaviours under a single set of market conditions, 
it would be inappropriate at this stage to shape model input data explicitly 
based on market bids and offers, or on the levels of market participation seen 
for elements such as wind. 

These aspects impact on the input validation component, since they indicate the I-SEM is a 
recently launched market still developing to a steady state. An approach to market 
modelling based on the underlying cost-drivers and aggregate system outcomes is most 
likely to closely and reliably predict future behaviours for such a market.  

These aspects likewise impact on the backcast component. It is difficult to categorically 
validate a model against historical market outcomes with a single year of data. If recent 
historical data is used to shape model outcomes too strongly this can result in model over-
fitting. A model which is over-fit to exactly replicate the market outcomes from a specific 
market year will not be appropriate to model future expected years.  

In a number of these areas where over-fitting is a risk the modelled behaviour was reviewed 
and compared to the market behaviour. This process is designed to identify risk areas for 
future analysis. If these trends continue to be seen as the market develops then it is an area 
where the model will need to be adjusted to better fit market outcomes. 
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3 Generation plants 

3.1 Commissioning and retirements 

The inclusion of generation commissioning and retirement dates in the model is intended 
to provide a close representation of firm market capacity. This means that it will reflect 
capacity which can be assumed to be committed to market, as signified by the outcomes of 
the T-4 2022-23 capacity auction and 2018 DS3 frequency response auctions (services to be 
delivered May 2021). It will also reflect firm generation capacity retirement decisions, as 
announced to market.  

The primary source where these elements are consolidated is in EirGrid’s most recent GCS. 
However, this was supplemented by a review of the T-4 2022-23 capacity auction outcomes, 
DS3 frequency response auction outcomes, public market announcements and specific 
information sourced from the generators themselves. Timings of new build and of 
retirements were based on those described in the T-4 2022-23 capacity auction outcomes 
unless the generation participant provided more specific data. All retirements have been 
discussed and agreed with the RAs. 

While batteries from the DS3 frequency response auction are included at this time these 
batteries may be dispatched on a shorter timeframe than the hourly DAM. It is 
recommended their inclusion is reviewed regularly as more information on their 
characteristics becomes available. 

Retirements 

The following table provides a summary of generation unit retirements that have been 
revised or introduced to the model since the previous validation exercise. 

Table 4  Plant retirements (updates from previous model only) 

Plant Capacity (MW) Closure Comment and key difference 

Aghada (AT1) 90 2023 IED limited life-time derogation. Did not clear the 
CY2018/19 T-1 auction 

North Wall 5 104 2019 Closing in September 2019 to be repowered 

Moneypoint 885 2025 Assumed in latest GCS on the basis of 
Moneypoint not being compliant of the Clean 

Energy Package of 550gCO2/kWh 

Kilroot ST1 238 2024 AES has indicated that it will reduce to 199MW 
from mid-2020. As per latest GCS it is assumed 

not available after 2024 due to restrictions on 
coal-firing 

Kilroot ST2 238 2024 AES has indicated that it will reduce to 199MW 
from mid-2020. As per latest GCS it is assumed 

not available after 2024 due to restrictions on 
coal-firing 

West Offaly 140 2020 Announced closure at the end of 2020 

Lough Ree 93 2020 Announced closure at the end of 2020 
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Commissioning 

The following table provides a summary of the new plants that have been added to the 
model since its previous validation exercise. 

Table 5  Plant commissioning (updates from previous model only) 

Plant Capacity (MW) Start 

ESB North Wall 5 GT 118 2022 

ESB North Wall 4 GT 118 2022 

ESB Ringsend Gas Flexgen 70 2022 

ESB Poolbeg Gas Flexgen 70 2022 

ESB Corduf Gas Flexgen 70 2022 

ESB Poolbeg 2hr Battery Storage 75MW 
(39MW de-rated capacity in GCS)  

2022 

ESB Southwall 2hr Battery Storage 30MW 

(17MW de-rated capacity in GCS) 

2022 

ESB Inchicor 2hr Battery Storage 30MW 

(17MW de-rated capacity in GCS) 

2022 

ESB Aghada 1hr Battery Storage 19MW 
(7MW de-rated capacity in GCS)  

2022 

Porterstown Battery Storage 30MW 

(20MW de-rated capacity 
assumed) 

2022 

Kilmannock Battery Storage 30MW 

(20MW de-rated capacity 
assumed) 

2022 

Gorman Energy Storage Station 50MW  

(40MW de-rated capacity 
assumed) 

2022 

 

The key differences include: 

 Introduction of five ESB gas generators in 2022 with a total capacity of 
446MW that have been successful in the recent CY2022/23 T-4 capacity 
auction.  

 Introduction of seven battery storage units with a total capacity of 207MW 
in 2022 based on most recent capacity auction results and DS3 frequency 
response auctions. 

Aggregate installed capacity 

Generation installed capacities per fuel category are illustrated in the figure below showing 
the capacity updates described so far. In general coal, peat and oil plants are retiring across 
the modelling horizon. New generation capacity tends to focus on a mixture of gas, storage 
and wind. 
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As noted above the total capacity represented in the model only includes firm retirements 
and commissioning based on proposed plants which are viewed as committed to market. 
This mirrors the latest available data from GCS, auctions and the RAs. Future auctions may 
identify more capacity to come online post 2022 to offset retirements and allow for a healthy 
capacity margin with rising demand. 

By representing only firm committed decisions for new build and retirements then the 
PLEXOS I-SEM model can provide a strong signal on forecast areas of market stress. This 
allows potential new entrants to identify the potential value of possible new builds with 
different generation profiles. 

Figure 2  Installed capacities 

 

3.2 Technical and commercial data 

The representation of technical and commercial data in the PLEXOS model is one where 
expected generator bids and offers are built up based on key technical unit-level data and 
associated expected costs of different unit behaviour. This means that the technical and 
commercial data inputs must be a strong representation of the marginal running costs of a 
committed unit, as well as including a strong representation of the start-up costs, and 
operational running characteristics of each plant. 

For existing plants, these market characteristics are usually sourced from generators and 
reflect their best estimate of the operational realities of a given unit. For new proposed plant 
these characteristics need to be developed from a generators prospective view of expected 
operational characteristics. In practice the actual operational performance of the plant may 
allow the plant to over-perform or under-perform against these specifications once it enters 
the market.  

It is essential that technical and commercial data values are a close representation of the 
way participants view their plant running characteristics. The I-SEM PLEXOS model is 
most effective when it reflects the data which participants are basing their commercial 
decisions off when deciding what to offer to market, and at what price.  
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Following the quality assurance process described in section 1.3 the technical and 
commercial plant data, directly sourced from participants, was updated per unit in the 
model. The updates reflect any recent or future expected changes to running characteristics. 
In summary, the data that were validated and updated accordingly were: 

 Fuel type 

 Capacity 

 Heat-rates 

 Forced outages and mean time to repair 

 Ramp rates and min up and min down times 

 Start-up characteristics 

 VOM costs 

 Operational costs 

There were a number of key changes to technical and commercial generator data. Based on 
engaging with stakeholders on the specific large changes these were mostly driven by re-
evaluation of key cost drivers. Related changes included increased granularity of data or 
re-evaluation of start-up characteristics.  

The following table illustrates the percentage of generators that had a change in the main 
technical and commercial characteristics. The values below do not reflect the scale of the 
change, in many instances this was relatively small.  

Table 6  Key technical and commercial generator updates  

Key generator parameter changes % of generators with changes 

Heat-rate 36% 

Start and VOM costs 82% 

Operating costs 24% 

 

The largest number of updates were to the start and VOM costs, followed by heat-rate 
updates. Many of these heat-rate updates were designed to provide a more detailed 
representation of the heat-rate curve characteristics. Around a fourth of the plants had an 
update to their operational costs.  

The largest value shift, and the most widespread shift in the provided technical and 
commercial data was due to the significant number of start-up cost updates. This may be 
primarily due to revisions of internal estimates when re-evaluating market offer drivers 
following the launch of I-SEM. In some cases, updates also reflect changes to participant 
exposure to these costs due to revised market-based contracts or service/maintenance 
contracts. Where changes were significant data providers were re-engaged with to request 
more information or a further review of the supplied data. 
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In aggregate the updates to technical and commercial characteristic data form a stronger 
representation of market behaviour since the I-SEM launch.  

NOTE: Some of these model elements represent commercially sensitive information, these 
are strictly confidential and will not appear in the final publicly available validated model. 

3.3 Storage and hydro 

Storage is a key focus area across many markets due to increasing penetration of 
intermittent generation technologies (such as wind), and the gradual retirement of various 
flexible dispatchable thermal plant. The I-SEM is also encountering this trend, as can be 
seen with the inclusion of larger scale batteries in the future capacity auction outcomes.  

The primary update on storage has been the addition of seven batteries to the model as 
shown in section 3.1. The addition of these batteries is based on the results of the latest 
capacity auction results and the DS3 frequency support outcomes which both project an 
increase in expected battery storage capacity. Each battery is represented by: 

 Capacity 

 Minimum stable level 

 Minimum down time 

 Charging efficiency 

 Forced Outage Rates (FORs) 

 Mean time to repair 

 Energy storage capacity  

As shown by the difference between the Capacity Auction outcomes and the DS3 frequency 
support auction outcomes, typically battery storage, hydro-based storage and hydro-
generation facilities can play a number of different roles in the market. Each of these roles 
has an associated revenue stream and set of operational behaviours. The exact offer 
behaviour of these plant in practice will be shaped by: 

 Provision of energy support. This means the energy storage will charge during 
periods where wholesale electricity prices are low (e.g. overnight) and will 
discharge when electricity prices are high (e.g. across peak time periods). The 
key revenues associated with this activity come from the arbitrage between the 
low energy prices at night, and the higher ones over peak time periods. The 
operational behaviours associated are a full charge across low priced periods 
and a full discharge across high priced periods. 

 Storage providers may also receive revenues based on their role in providing 
energy support. In the event of an under-frequency event a partially charged 
storage facility may be capable of rapidly discharging to provide frequency 
support, or in the case of an over-frequency event a storage facility can charge 
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and absorb some of the additional system generation. The operational 
behaviours associated with this may include charging and discharging within 
a more limited range of the total capacity so that some portion of the capacity is 
always available to respond to frequency events. 

In practice most storage facilities will probably operate so as to receive revenues from both 
of these revenue streams. However, the aggregate operational behaviours associated will 
be partially determined by fundamental economics, and partially by any specific contracts 
or system requirements related to the two behaviours. 

Since strong information in these areas is not yet available, the future installed batteries are 
assumed to primarily provide energy support, generating and discharging between 
wholesale energy arbitrage. This modelling approach will typically be correct for at least a 
large portion of the battery capacity and implies that the new storage is likely to follow a 
similar operating model to the existing pumped storage in the system. However, this 
approach can be less appropriate where storage is contracted or incentivised to provide 
very fast responses used to ensure grid stability. The modelling approach for storage 
technologies should continue to be monitored as more storage comes online. 

Pumped storage and hydro modelling approach have not been changed since the last 
validation exercise except for the outage updated to reflect latest projections and some 
minor technical updates to a minority of plants based on the data collection exercise. This 
representation includes the following parameters: 

 Capacity 

 Max ramp up and ramp down 

 TLAFs 

 Planned outages 

 FOR 

 Mean time to repair 

 Maximum and minimum energy storage volume 

From the validation and engagement carried out there does not seem to be a change in 
market behaviour that would justify a change to these modelling parameters. Analysis of 
pumped storage dispatch indicates that it continues to be used primarily for energy 
support, pumping during off peak night periods and generating during peak periods. 
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Figure 3  Pumped storage hourly normalised generation and pumping historical pattern 

 

Source: based on historical Oct 2018 – Sept 2019 data (hours based on market trading period) 

The pattern of pumped storage use implies that the value accrued for pumped storage is 
primarily through time-based energy price arbitrage. This reinforces the hypothesis that 
the most appropriate representation for other storage (batteries) would be driven 
opportunities for energy price arbitrage. 
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The model parameters driving both planned and forced outages have been updated in the 
model. The approach used is described in the following sections. 

Planned outages are generator and transmission outages which are typically for the 
purposes of equipment maintenance and upgrades. These are known about in advance but 
planning schedules for these outages tend to be less reliable for dates further into the future 
as the maintenance needs of units may change between now and that date. The 
representation of these outages in PLEXOS follows a scheduled outage plan, where the 
expected outages for each unit are manually input with specific associated dates. The use 
of this methodology allows the PLEXOS optimisation algorithm to identify times of future 
expected unavailability for certain plant and to predictably incorporate those expected 
outages when determining the least cost outcomes.  

Forced outages are generator and transmission outages which are unexpected and 
unpredictable. They will typically occur due to a technical issue with a particular facility. 
These are difficult to predict both in terms of when they will occur, and how long the 
maintenance will take to get the unit back online. The model representation of these is based 
on a percentage probability of an outage occurring, and an expected time for the outage to 
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persist for. The model algorithm then uses a random number generator to distribute these 
forced outages randomly across the modelling timeframe. 

3.4.1 Planned 

Planned outages to 2022 have been updated based on the published outage plan to 2022 
provided by SEMO. These are outages specified per unit with a start and end time. For the 
period from 2023 to 2025 a theoretical outage plan has been constructed based on the 
published outage plan to 2022 and historical outage patterns. The process that was followed 
in creating representative annual outage schedule for the period 2023 to 2025 is described 
below: 

 2020 outage plan was used as the base year. 2020 is seen as the best 
representation to assume outages going forward as it is the closest in time and 
includes the most up to date knowledge. 

 Plant level outages were analysed out to 2022 to identify outage patterns. This 
analysis was carried out by evaluating units in conjunction with similar units 
that were co-located and of the same type, age and company. 

 Genuine outage patterns were identified and separated from one-off large 
outages. Larger outages were re-evaluated in groups of units against historical 
and future outage schedules. Where clear patterns could be identified they were 
included, either for the current plant or a plant of a similar type. 

 Caution was used to ensure that outages between years were not artificially 
stacked during overlapping periods, something which in reality would be 
avoided. 

The following figure provides an illustration of the monthly available capacity in years 2020 
- 2023 with the inclusion of the updated outage plan. For comparison the average 
availability in the previously validated model in 2020 was 93.35% across all generating units 
compared to 93.04% in the current validation exercise. This is driven primarily by the latest 
published outage schedule from SEMO.  
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Figure 4  Available capacity 2020 - 2023 

 

3.4.2 Forced 

The forced outages were updated based on the technical data collection exercise directly 
sourcing information from generators. The validation and analysis of this data was 
combined with standard expected FOR from historical analysis. The figure below illustrates 
the average FOR per fuel category. Coal experienced the most substantial reduction in FOR 
due to the revision of the expected forced outage rate for two units.  

Figure 5  Average FOR per fuel category 
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4 System data 

System data updates have historically been performed using gross system inputs for 
electricity demand, embedded generation, and wind values.5 This means that the entire 
physical system is represented in the PLEXOS model, rather than simply the components 
which are offered to specific markets. The aggregate system outputs from this approach 
will remain a strong representation of market results. This is because the supply and 
demand elements which are not explicitly offered to market will be netted off or entered as 
non-dispatchable facilities. Therefore, the physical realities of the markets should hold true. 
The remaining price and generation dispatch forming market elements will then 
predictably form the price in the same manner they would if only the elements which were 
directly offered into the DAM were used for the model. 

This representation was chosen for a number of reasons: 

 A comparison between the backcast results based on gross system inputs and 
those using the inputs given to EUPHEMIA for wind and demand gave very 
similar price and interconnector flow outcomes. This confirmed that gross 
system inputs were an appropriate representation of the system-based drivers 
for DAM market results. 

 Available data sources are much more reliable and comprehensive on total 
demand. There are many years of gross demand data available which allows us 
to consider a range of historical profiles. At this stage there is only a single year 
of demand data cleared through the DAM. A single year of data will only reflect 
the market under a particular set of demand and weather conditions. It is less 
risky to use the gross data than to construct a set of theoretical historical market-
cleared demand profiles based on a single year of data.  

 Available data sources are much more reliable and comprehensive on total 
system wind. There are many years of gross wind generation data available, 
while only one year is available for wind cleared through the DAM. For 
example, the percentage split of wind which is offered into the market across 
that year is available. However, a single year of data will only reflect the market 
under a particular set of weather conditions. Additionally, there is no strong 
information on how that percentage split would have evolved over the previous 
years as installation capacity and locations evolved. 

 Embedded generation profiles are available across historical years, alongside 
future projections developed by EirGrid. These are built to form part of the basis 
for wider market analysis on future expected generation and consumption 
trends by EirGrid. Consequently, they provide a better view of how growth in 
installed capacity of various technologies is likely to be accounted for 
in/outside of the markets. 

 Future capacity and peak demand forecasts provided by the latest GCS (2019-
28) reflect gross demand growth. Without several years of data, it is not 

 
5 In this instance gross system inputs are represented by whole-of-system actual data as developed 
from SCADA readings or directly supplied by EirGrid. 
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reasonable to infer a reliable relationship between these expected aggregate 
system projections and the representation of these system elements that can be 
expected as inputs to the DAM. This is particularly the case as different market 
segments are more/less likely to be offset against localised generation, as 
opposed to being brought to market. A new industrial plant may have a power-
producing element to its industrial processes, whereas a new data-centre’s full 
load is more likely to be directly incorporated into a market clearing 
mechanism. 

 Future technology installation trend data which is available does not clearly 
differentiate between which capacity is likely to be cleared through the day 
ahead market as opposed to the installed capacity which may be incorporated 
into other categories including localised generation. There is insufficient market 
data at this stage to identify the key relationship between recently installed 
capacity and its likelihood to be offered into the day ahead market. This is 
particularly challenging in the area of wind where each site has its specific 
locational and capacity characteristics.  

For these reasons the gross supply and demand methodology set out in previous 
validations was retained. Into the future, however, the development and maintenance of 
information sources which can clearly identify the evolving relationship between these 
gross demand, wind, and embedded generation numbers, and the offer/bid levels 
observed in the DAM is strongly recommended. Once three to five years’ worth of data is 
collated comparing the outcomes then the RA’s may be in a position to revise this 
methodology and move to one more directly related to market offers and bids. 

4.1 Demand 

Demand profiles used in the PLEXOS I-SEM model are based on hourly data. A range of 
annual historical hourly demand profiles are identified and compared to ensure they are a 
strong representation of overall system characteristics. Once these have been identified a 
set of forward-looking future expected hourly demand profiles are formed based on each 
one of the annual profiles. The future looking profiles are extrapolated based on future 
expected median annual peak and total demand (Total Electricity Requirement - TER) 
projections for each of the years in the forward-looking model horizon.  

In this instance five profiles were used to provide five different annual demand profile 
samples, and these were then combined with future expected peak and total demand 
projections to construct forward-looking hourly profiles with the PLEXOS demand builder 
tool. 

The model representation of demand and wind takes these five base year profiles and 
undertakes a series of simulations to construct a range of future expected dispatches and 
prices. This input validation continued the approach of previous validations correlating 
wind and demand. The mean of all runs was used as the core output from the range of 
scenarios. This approach adds robustness to the demand and wind modelling as it ensures 
the model is not restricted to the individualities of one year and also provides a good 
balance between running time and accurate results. 
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Changes to demand include: 

 Update of annual peak and total demand projections to align with the latest 
GCS 2019 projections of the median scenario. 

 Update of profiles used for hourly representation of demand to align with latest 
profiles available from 2014 – 2018. 

The following figures illustrate the change in total demand and peak demand projections 
from GCS 2018 against GCS 2019. The latest GCS 2019 has lower total electricity demand 
and annual peak demand projections compared to GCS 2018 meaning that assuming 
similar capacity projections there is a higher capacity margin.  

Figure 6  Annual total and peak demand projections 

Source: GCS 2018 and 2019 

 
The other feature that was reviewed was the update of demand profiles to include the most 
recent hourly profiles. For this purpose, 2014 to 2018 demand hourly profiles gathered from 
the TSOs were used. 

This decision was based on a comparison of the 2014-2018 hourly profiles against the 
existing historical profiles. It was deemed that the demand profiles for 2014 – 2018 formed 
a better basis for the model because: 

 They are a more recent representation of demand profiles and more likely to 
represent current and future demand behaviour. 

 No significant variations have been observed in any one year to signify it should 
be omitted. The profiles from 2014 to 2018 provide a good mix of variation 
between market states. 

The PLEXOS demand builder is used to create five demand profiles, each one based on the 
actual demand profiles of 2014 to 2018 but scaled in a way to respect the annual expected 
total and peak demand out to 2025. 



System data 

 

ECA - Input Validation and Backcast Report 28  

Figure 7  Representative average hourly demand profiles for March 2020 

 
Five profiles based on 2014-2018 historical demand data  

Figure 8 Total monthly demand 2014 - 2018  

 

4.2 Wind 

In a similar manner to demand, wind capacity factors are represented by hourly profiles. 
These profiles reflect the percentage of installed capacity expected to be dispatched at any 
one time. The percentage-based profiles are then applied to the total installed capacity 
linked to each profile.  

Since no specific future trends in wind capacity factor were identified it was not necessary 
to build future expected hourly capacity factor profiles out to 2025. Instead the future 
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expected growth is reflected by the installed capacity, while the capacity factor remains 
fixed. 6 

Wind, like demand, is represented by five base year profiles, each of which is correlated 
with the same base year demand profile. As a result, the market model inputs assume that 
the same factors which drive wind in the I-SEM also have an influence on demand in the I-
SEM, and so wind and demand tend to be correlated in practice. This seems like a 
reasonable assumption given the strong impact of weather in forming both wind and 
demand drivers. As described above the model is run across this range of samples to 
produce a range of possible simulated outcomes. The mean of all runs is then used as a 
cumulative representative output.  This approach delivers a reasonable balance between 
running times and modelling outputs. 

The updates to wind broadly mirror the updates undertaken for demand: 

 The latest wind capacity projections to 2025 as per the most recent GCS. It is 
deemed that this data is the most accurate projection of wind capacities for the 
modelling horizon. 

 More recent wind profiles including 2017 and 2018 are deemed a better 
representation of current and future wind behaviour as they capture a larger 
pool of windfarms across a larger geographical area. 

The following figures illustrate the capacity growth comparison between the previous 
model and the updated model. Comparing the two, both in Northern Ireland (NI) and the 
Republic of Ireland (ROI) wind uptake is now expected to occur more slowly when 
compared to the previous projection. This means that less wind is available in certain years 
compared to the previous modelled values. 

 
6 In practice future capacity factors may change. This is due to two competing influences on realized 
wind-farm capacity factors. Technological changes and efficiencies may improve the ability of wind 
turbines to capture the available energy, and so to capture a higher percentage of the wind-farms 
installed capacity to generate. However, alongside this potential increase to capacity factor there is 
significant potential for decreases to realized capacity factor for new wind-farms. This is because 
typically the most promising wind flow sites are the sites which will be built on first. As wind-farms 
are increasingly placed on less promising sites the capacity factor for each of these new installations 
may decrease. It is assumed these two effects broadly offset one another and so assumed the capacity 
factor remains constant.  
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Figure 9  Wind capacity outlook 

 
 

After analysing and testing wind capacity factors across historical years it appears that the 
years 2014 to 2018 provide a healthy variation between years with no particular extreme 
outliers. This means no years contain extended high wind or low wind periods that could 
distort model results. This also provides data which is easily correlated to the demand 
profile updates described above.  

The data provided follows the same split as the previous model of wind being represented 
separately between NI and the ROI.  Given the I-SEM clears as a single node market this 
would produce an adequate representation of wind.  

Figure 10  Representative average hourly wind capacity factor for ROI in March 2020  

 
Five profiles based on 2014-2018 historical demand data 

2000

2500

3000

3500

4000

4500

5000

5500

6000

400

500

600

700

800

900

1000

1100

1200

1300
J
a
n

-1
8

M
a

y
-1

8

S
e

p
-1

8

J
a
n

-1
9

M
a

y
-1

9

S
e

p
-1

9

J
a
n

-2
0

M
a

y
-2

0

S
e

p
-2

0

J
a
n

-2
1

M
a

y
-2

1

S
e

p
-2

1

J
a
n

-2
2

M
a

y
-2

2

S
e

p
-2

2

J
a
n

-2
3

M
a

y
-2

3

S
e

p
-2

3

J
a
n

-2
4

M
a

y
-2

4

S
e

p
-2

4

J
a
n

-2
5

M
a

y
-2

5

S
e

p
-2

5

M
W

 (
R

O
I)

M
W

 (
N

I)

previous (NI) updated (NI) pevious (ROI) updated (ROI)

0

10

20

30

40

50

60

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

%

2018 2017 2016 2015 2014



System data 

 

ECA - Input Validation and Backcast Report 31  

Figure 11  Wind monthly average capacity factor profiles 2014-2018 

 
 

SNSP Limits  

SNSP limits in the market may restrict the percentage of demand which can be met by 
intermittent generation at a given point in time. This limit changes based on regulatory 
settings and has most recently been set at 70%.  

The SNSP limits are applied to market in real-time. As a result, SNSP limits are unlikely to 
impact directly on market results, but an indirect impact may be seen at the gross input 
level (e.g. the gross wind profiles against gross demand). These are not the wind profiles 
which are offered to market, but since the basis of the PLEXOS model inputs is derived 
from the gross dispatched historical market outcome elements for both demand and supply 
then it is important to understand how the relationship between these core data-sources is 
likely to be impacted by SNSP.  

To facilitate this a tool has been created that provides the option to calculate wind profiles, 
based on the correlation with demand profiles in a way that SNSP limits are respected. It 
manipulates the certain hours in the wind profile to ensure the intermittent generation 
quantity from wind never exceeds the limit set by SNSP. The tool is based on a monthly 
setting of the SNSP limits. 

It was discovered through this process that the impact on modelling results is very limited 
curtailing an average of only 2.8% of total available wind energy per year per wind profile. 
Our initial view was that since it has a minimal impact and would ensure a stronger 
representation of the relationship between gross demand and gross wind dispatch, which 
would be netted off outside of the day-ahead market that these SNSP limits would be 
suitable for inclusion in the PLEXOS model. 

However, following the December stakeholder workshop, a number of participants raised 
concerns that applying SNSP limits would unduly limit wind offers in a manner which had 
not been observed through the DAM offers. Their concerns were noted and consequently, 
it is recommended to exclude any explicit modelling of the SNSP limits at this time but 
continue to monitor for the purposes of model input validation. Also, it should continue to 
be observed whether or not there is any significant market impacts being introduced in the 
day ahead market due to these elements.  
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Areas for potential future improvements  

At present offshore wind does not account for a substantial percentage of wind generation 
in either of these regions. However offshore wind capacities are projected to increase in 
later years, and if this trend continues to be shown it is recommended that the development 
of distinct profiles to represent onshore and offshore wind separately is considered. 
Typically, offshore wind tends to have higher capacity factors than the onshore equivalents. 
However, if such a split is going to be considered in the future then it is essential for the 
TSOs to begin collecting good data on the offshore wind profiles a number of years before 
it is introduced into the model. 

4.3 DSUs 

DSUs are Demand Side Units – these are price responsive consumers in the market. The 
majority of these price responsive units are willing to reduce their electricity demand in 
response to a particular price if they are cleared in the market. Some of these units represent 
facilities which have on-site generation capabilities as well. A portion of those with 
offsetting onsite generation units have negative bids reflecting their willingness to either 
reduce their generation dispatch in response to an appropriate market signal, or to increase 
their net demand through other means.  

The modelling of DSUs involves segmenting the available capacity into a discrete number 
of price categories and using the price to represent their willingness to forgo electricity 
consumption for market-based remuneration. The analysis that underpinned the creation 
of the bands is based on existing market offer data. This modelling approach is similar to 
that in earlier models, however based on the available market data an approach was chosen 
which categorised DSUs into six units rather than the previous five. The latest market offer 
data indicated that it allowed us to provide a stronger representation of the DSU offers most 
likely to be cleared into the market. A key focus was ensuring smaller quantity bands were 
used for the lower priced DSUs, since these were the most likely to impact modelled market 
outcomes by being called upon. It was assumed that as the number of DSUs grew into the 
future that a similar proportion of the capacity would be attributable to each offer band. 
These bands and their projected growth are shown in Figure 12 below. 

DSU modelling has been updated based on: 

 The latest DSU capacity projections from GCS 2019. 

 The installation dates of the latest T-4 2022-23 capacity auction outcomes. 

 Observed offer data. 

Notably a large proportion of DSU capacity is currently bid into the market with high 
minimum income conditions and would usually only be dispatched when the market is in 
extreme stress across a very small number of trading periods within a day.  The resultant 
effective bid price for many of these units is higher than the price of €8,100/MWh that they 
are represented by here. However, since the €8,100/MWh price is not reached in any 
scenario there is little value in representing the granularity above this price. 
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Also, if there was a prolonged extreme market stress then these DSUs may be activated 
regularly in the market, and the minimum income requirement spread over higher trading 
period numbers. This would mean a lower effective bid price per hour. While this is 
currently unlikely based on market results to-date, the DSU structure should continue to be 
monitored as if these high priced DSUs begin to be dispatched in the market regularly then 
the pricing of these units should be reviewed, alongside the granularity of representation 
in the model.   

Figure 12  DSU growth per category 

 

4.4 Interconnectors 

There are two interconnectors which are currently commissioned in the I-SEM. The Moyle 
interconnector connects NI to the north of GB’s electricity market, while the East-West 
Interconnector (EWIC) connects the ROI to a more southerly point in GB’s electricity 
market. 

Greenlink is a planned interconnector between GB and Ireland. Although its connection 
date could fall within the modelling horizon for validation it is still subject to approval from 
CRU and Ofgem. Following discussion with the RAs it was therefore deemed out of scope 
for this validation exercise however will be monitored and considered in future validation 
exercises. 

Moyle and EWIC have both a published rated capacity, and an allowable transfer limit. 
While the rated capacity is fixed, the allowable transfer may differ based on seasonal and 
environmental factors. While EWIC does not have seasonal capacity allowances, the Moyle 
interconnector has evolving specific firm contracted capacity limits for transfer from NI into 
GB. Each of these is identified for specific time-periods from November 2017 through until 
the full capacity is expected to be available in April 2022 onwards. Additionally, a day 
ahead process can allow nominated capacity to exceed these published limits on a day-to-
day basis. 
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For the purposes of the forward-looking PLEXOS model the interconnectors are modelled 
in accordance with official published ratings as per the Moyle Interconnector Ltd 
Interconnector Capacity Calculation in July 2017.7 This includes technical parameters, ramp 
rates and contracted capacity volumes. It is noted that Moyle has a varying limitation to its 
maximum capacity as illustrated in the table below. This follows the approach used in 
previously validated models. 

Table 7  Moyle interconnector contracted capacities 

Direction Dates 
Firm contracted 
capacity (MW) 

Moyle - west to east 

10 Nov 2017 - 30 Nov 2019 80 

1 Dec 2019 - 31 May 2020 307 

1 June 2020 - 31 Oct 2021 250 

1 Nov 2021 - 31 March 2022 160 

1 April 2022 onwards 500 

Moyle - east to west 

Months November - March 450 

Months April - October 410 

 

Areas for potential improvements 

There are observable differences over the historical time-period between these published 
flat capacity limits and the actual capacity limits seen in the market. Consequently, analysis 
was carried out to confirm whether or not the standardised capacity limits described above 
were a reasonable representation of the market. This analysis included comparing historical 
flows, day ahead forecasted transfer capacities and the firm contracted capacities since I-
SEM’s introduction.  

It is noted that day ahead forecasted transfer capacities may vary in practice compared to 
the flat firm contracted capacities in Table 7 for Moyle. However, average flows tend to 
respect these limits. On average the annual physical outcomes should be a reasonable 
representation, but when broken down by month or day the peak flows may be limited in 
the model compared with what would be expected in the market. Unfortunately, there is 
insufficient data to reliably predict the times and profile of actual interconnector availability 

 
7 Moyle Interconnector Limited, Interconnector Capacity Calculation, July 2017. 
http://www.mutual-energy.com/wp-content/uploads/downloads/2018/01/170720-
Moyle_Capacity_Calculation_July2017-approved.pdf 
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compared to these flat limits going forward.8 This issue is worsened by the fact that the 
limits being calibrated change moderately often.  

Given these difficulties, and despite the inherent limitations, the published firm capacity 
remains the most robust representation of interconnector limits currently available. 
Notably the interconnector capacity modelling has the potential to evolve into a better 
representation once more market data becomes available. Also, beyond 2022 these limits 
should no longer impact on modelled market results.   

Interconnector outages are applied in the same way as the generation unit outages 
described in section 3.4. For forced outages the current forced outage rate is aligned to the 
SEM CRM Parameters Decision Paper from 2017.9 This is expected to be reviewed as 
appropriate by the RAs as part of setting CRM Parameters for each auction round. No new 
interconnectors are introduced within the modelling horizon out to 2025, this is based on 
the latest projections, regulatory approvals and discussions with the TSOs and RAs. 

4.5 TLAFs 

TLAFs are used to represent the transmission loss factors applied to generation from 
different generation facilities when considering the proportion of that generation which is 
delivered to the markets. These are held as standard values each associated with a specific 
unit. 

The TLAFs are published by EirGrid regularly and the modelled values have been updated 
to reflect the latest published 2019/20 approved values10. New plants that do not exist yet 
but are commissioned throughout the modelling horizon are assigned TLAFs from the 
existing data based on their location. The effect of the TLAF update on modelling results is 
minor, and these plants should have their TLAFs updated as new values for them are issued 
by EirGrid. 

4.6 Embedded generation 

Embedded generation represents non-dispatchable generation and some partially 
dispatchable generation whose input is fixed in advance; this may incorporate some small-
scale wind. 

 
8 As part of stakeholder feedback, a potential approach was suggested which would link 
interconnector availability to wind levels. However, given the large changes in Firm Contracted 
Capacity in Dec 2019 and again in June 2020 we did not feel sufficiently confident that historical 
analysis on this would provide useful information on the future relationships between capacity and 
wind to implement such an approach as part of this model validation.  
 
9 https://www.semcommittee.com/publication/publication-crm-parameters-decision 10 April 
2017 
 
10 http://www.eirgridgroup.com/customer-and-industry/general-customer-information/tlafs/ 

https://www.semcommittee.com/publication/publication-crm-parameters-decision%2010%20April%202017
https://www.semcommittee.com/publication/publication-crm-parameters-decision%2010%20April%202017
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Embedded generation has been updated with hourly profiles provided by EirGrid to 2024. 
These have been validated by comparison to technological growth trends and extended to 
2025. In general, the updates in embedded generation are small in scale and do not have a 
significant effect on model outputs.  
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5 Commodities 

Commodity price updates can result in large changes in price and dispatch dynamics. This 
is because the short-term volatility can drive a shift in the likely merit-order dispatch in 
electricity markets.  

In practice model users are expected to update these values based on the most recent 
available information. All forward-looking analysis was performed using the set of values 
detailed in Table 8 below to retain a consistent outlook on the impact of different key 
changes to generation and system data. 

5.1 Fuels 

Fuel pricing can be input on a quarterly basis and should be updated to reflect the model 
user’s best future expectation at the time of modelling.  

To test the sensitivity of model results to changes in fuel pricing, a version of the model has 
been created where commodity and exchange rates were kept at the values used for the 
‘Round 8 of Quarterly Directed Contracts’ in September 2019. All comparisons between 
updates referenced including the waterfall chart (Figure 27) are based on these commodity 
assumptions also summarised in Table 8. This is only for indicative comparison purposes 
and to keep the commodity assumptions constant whilst carrying out other model updates. 
In the final model released to the RAs commodity pricing will be based on the latest fuel 
data as of 30 October 2019. As would be expected, any large shifts in short-term fuel data 
will have a significant impact on model price and dispatch outcomes. 

Table 8  Commodity and exchange rate assumptions used as base for model updates  
(from Round 8 of Quarterly Directed Contracts) 

 
Q1 2020 Q2 2020 Q3 2020 Q4 2020 

Coal ARA API2 $/t 62.40 64.38 66.50 68.70 

Gas p/th 54.48 45.92 44.99 52.34 

Gasoil $/t 539.43 536.96 538.67 537.99 

LSFO $/t 363.93 366.43 369.28 365.09 

Carbon €/t 28.57 28.57 28.57 28.57 

     

EUR to USD 1.1202 1.1202 1.1202 1.1202 

EUR to GBP 0.9235 0.92353 0.92353 0.92353 

 

Modelling outputs are significantly impacted by any movement in the relative pricing of 
commodities, exchange rates and carbon. Historically commodity prices and exchange rates 
can vary significantly as can their interrelationships. Model users are expected to regularly 
update commodity and exchange rate assumptions before carrying out simulations. This is 
best practice and ensures that modelled outcomes capture the most recent market drivers. 
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Figure 13  Historical volatility of gas prices, coal prices and exchange rates 

 
*Prices are nominal 

5.2 Carbon 

Carbon pricing captures the additional costs incurred by thermal-based electricity 
generation due to their carbon emissions. The costs associated with carbon emissions will 
differ across the regions which impact on the I-SEM. These are the Republic of Ireland, 
Northern Ireland and Great Britain. GB has a separate carbon price input in the model so 
that any changes in carbon price can immediately be incorporated into the aggregate price 
outcomes.  

The carbon price applied to ROI and NI is the European Union Emissions Trading System 
(EU ETS). For GB the carbon price is made up of the EU ETS and the Carbon Price Support 
(CPS) as part of the UK government’s policy to implement the Carbon Price Floor (CPF) to 
support the EU ETS. 

The CPS top up of GB’s carbon price as an addition to the EU ETS is defined by the ‘carbon 
floor price target’. When the CPF was initially introduced in April 2013 at £16/ tCO2 it was 
intended to rise to £30/tCO2 until 2020. However, in Budget 2014 a price freeze of £18/tCO2 
was introduced from 2016 to 2020 which was later extended to 2021 in Budget 2016 and 
reiterated in Budget 2018. GB carbon pricing is an area of uncertainty and Brexit outcomes 
may shape its future pricing.  

GB, NI and ROI carbon pricing can have a significant impact on interconnector flows and 
DAM prices. The input sheet described in the following section allows for carbon pricing 
to be updated. Speculation on future carbon pricing is out of scope for this update. It is 
recommended that this area is monitored and updated accordingly based on latest 
evolvements before model runs. 

5.3 Fuel adders 

Fuel adders are used in the modelling environment to represent cost-elements which are 
outside of the base fuel costs. These may include transport costs, physical delivery 
premiums, transport and port costs, gas transport costs, gas network operator costs, 
delivery to site costs and other specific uplifts. 
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The fuel adders have also been updated to reflect recent changes in RA and participant 
estimation of incremental costs related to fuel procurement. Updates have been made to the 
‘Gas NI’, ‘Gasoil ROI’ and ‘LSFO ROI’ fuel categories to reflect latest actual values. The 
changes are small and have a minor impact on model results. 

5.4 Input sheet 

To incorporate commodity inputs into the model a commodity input sheet has been 
prepared that takes as inputs the latest commodity price, carbon price projections and 
exchange rate assumptions. These are used to calculate the final price to be input into 
PLEXOS for each fuel category and puts these into a format suitable to be used as a model 
input. This is similar to input sheets used in previous years for this purpose.  

Both the input sheet and the model (where applicable) have been updated to accommodate 
for the changes summarised in the following table. 

Table 9  Commodity input sheet updates 

Parameter Update 

Commodities Updated with latest values 

Fuel adders Small updates (Gas NI, Gasoil ROI, LSFO ROI) 

ROI short-term gas capacity Updated from quarterly to monthly variation 

Dublin Bay Updated to reflect it is now purchasing short-term gas capacity (change 
effect from 26 Aug 2019) 

Peat Fuel option added for Peat plants (ability to separately enter for Lough 
Ree/ West Offaly and Edenderry) 

 

As described in previous sections commodities have been updated to reflect latest data 
available. Some small changes to fuel adders are incorporated to reflect latest values to three 
of the fuel types. 

The ‘ROI Short-Term Gas Capacity’ fuel type was updated from a quarterly to a monthly 
variation which provides a better representation of the variation observed in reality. 

‘Dublin Bay’ has been updated to reflect that as of the 26th of August 2019 it is purchasing 
Short-Term Gas Capacity. 

Fuel prices for all peat plants have been set up to allow for the introduction of a peat fuel 
price if needed. This was requested by the RAs as they have been informed that from the 
start of 2020 Lough Ree and West Offaly will have a change in their fuel contracting 
arrangements. Historically, peat generation at the two ESB peat plants were supported 
under the Public Service Obligation (PSO) scheme. As these plants move past the PSO peat 
supported period at the end of 2019, ESB will be going to market for new fuel sourcing 
arrangements, therefore it is reasonable to model these with an explicit fuel price. The 
impact of this change may mean these peat plants will operate less as baseload plants from 
this date onwards.   
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6 Model parameters and sensitivities 

6.1 Daily market optimisation parameters 

The PLEXOS model solves over the modelled horizon (e.g. 1-5 years) by discretising the 
problem into smaller interlinked sub-problems. For modelling the SEM, the sub-problem 
length is typically a day, with a designated start-time, and will include a few additional 
hours look-ahead.  The start-time is the time of day where each sub-problem starts, while 
the look-ahead represents that market participants have some expectations (an imperfect 
foresight) of what is likely to happen in the market dispatch and pricing outcomes beyond 
the end of the day. 

Start-time  

Historically the SEM PLEXOS model has used a start-time for each day of 6am which aligns 
with market solution outcomes prior to the launch of the I-SEM. The market start-time for 
the EUPHEMIA algorithm used to optimise the day ahead market scheduled outcomes is 
11pm. 

Changing the model start-time from 6am until 11pm was tested. This resulted in small 
changes to the aggregate solution, however the source of those changes was evident and 
when tested as part of the backcast methodology it was discovered that this later start-time 
represents a better representation of the day ahead market behaviours. 

The source of these changes relates to how the optimisation horizon is separated into 
different problems. PLEXOS will separate the annual problem into different stepwise 
segments and each of these segments will be formulated and solved independently, using 
the end-state parameters from the previous solve as the start-state parameters of the 
solution for the next problem set-up. Effectively PLEXOS is comprised of a chain of 
interconnected problems, each of which is optimised independently. When the start-state 
for the model is set at 6am this means that the end-state of each of these interconnected 
problems is just prior to the morning peak. With a 6-hour look-ahead the optimisation will 
also cover the morning up until 12pm. The start-state for the next day coincides with the 
morning peak. This would produce higher unit commitment at the end-state from the 
previous model solve as it anticipates high value across the day.  

In comparison an 11pm start-state means that the end-state of the interconnected problems 
occurs after the evening peak, including 6 hours look-ahead the optimisation will cover the 
morning up until 5am. The start of the next problem begins during low demand periods. 
This will result in lower unit commitment at the end of the daily modelled horizon, as it 
anticipates low return on generation which is kept online overnight.  

In both options the existing unit commitments and generation levels will be shaped by the 
trajectory at the time when the market solution changes, and neither is fully neutral as a 
solution. However, the 11pm market start-state induces more flexible solutions and will 
mean that the start-state of the market optimisation will be less strongly influenced by the 
optimisation problem outcomes from the previous day. 
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This has advantages and disadvantages: 

 this means that the PLEXOS model will more closely resemble the EUPHEMIA 
model which does not directly consider prior knowledge of generator positions 
for each day.  

 this also means a reduction in the quality of representing traded off-peak 
strategic offering behaviours on units which wish to remain dispatched 
overnight so as to avoid incurring start-up costs for the morning peak.  

The former seems a reasonable advantage given the PLEXOS market model outcomes more 
closely resemble the historical behaviours. However, the latter implies potential value in 
exploring a range of different look-ahead scenarios both with a 6am start-time and a 11pm 
start-time to better understand the impact of these changes. The particular focus of this 
exploration was how well they relate to the historical backcast time period in order to 
discover the balance of settings that is the most appropriate fit for real market behaviours. 

Look-ahead duration 

Like the start-time of the model, the look-ahead functionality in PLEXOS is particularly 
significant to the end-state and start-state of the interconnected modelled problems. This 
represents how many hours are added to the end of the model horizon to take into account 
the perceived opportunities and forward-looking trading behaviours across the following 
hours. The actual solutions across this look-ahead time period are then discarded, but they 
can have a significant influence on how well dispatch decisions represent trading 
behaviours over key time periods. 

The current look-ahead setting was 6 hours – this meant that from a 6am model start/finish 
time, the model would optimise over the next 30 hours through until midday the following 
day. The final 6 hours of solution data were then discarded, and the model state at 6am the 
following day was used as the initial conditions to set up the next 30-hour model timeframe. 

This look-ahead functionality primarily represents the way traders are thinking ahead 
when they are deciding what sets of bids and offers they want to show the market clearing 
algorithm. It is not intended to strengthen the optimisation algorithm, but instead to 
strengthen how well the model solution replicates the decisions being made by the 
aggregate group of traders themselves.  

For example, a trader with a high start cost may decide to offer a price lower than its 
marginal cost on overnight generation so that the plant will remain online through until the 
morning peak the next day and so avoid incurring those expensive start costs. 

As identified in the 2018 SEM PLEXOS Validation Report this limited explicit look-ahead is 
a fairly strong compromise. While the EUPHEMIA model has no explicit look-ahead 
function, traders have the ability to look into the future as far as they want but with 
increasingly imperfect foresight. 

Given the range of trading behaviours since the launch of the I-SEM, the efficacy of the 
PLEXOS model in replicating market outcomes across a range of different look-ahead 
settings was evaluated. 



Model parameters and sensitivities 

 

ECA - Input Validation and Backcast Report 42  

Table 10  Impact of changes to look-ahead (base 6-hour look-ahead 11pm start-time) 

Look-
ahead 
(hours) 

Price change (€) Average monthly 
interconnector flow 

to GB change 

GWh 

Average monthly 
interconnector flow from 

GB error 

GWh 

0 - €0.55 +8 +2 

2 - €0.12 -3 +4 

4 - €0.01 +1 +3 

6 Base Base Base 

8 - €0.08 +3 -2 

10 - €0.23 +32 -33 

 

The most robust look-ahead model setting is to retain the 6-hour look-ahead because there 
exist only small differences between the solution outcomes across the range of possible 
lookaheads. A trader deciding their bids and offers for an 11pm market solve would have 
in mind the set of bids and offers which would best ensure a physical dispatch overnight 
which prepares them for the start of the morning peak.  

Interestingly the move from a 6am market start-time to an 11pm market start-time means 
the look-ahead time has a much lower impact on the aggregate market outcomes as can be 
seen in the table above. As a comparison, for the 11pm start-time having no look-ahead sees 
prices reduce by €0.55 on average, whereas for the 6am start-time the same change results 
in a price increase of €1.43 on average. 

Exploring the unit-level data for a range of units across the market indicates that a 6 hour 
look-ahead has the most reliable trade-off between appropriate overnight trader behaviour 
looking to induce specific unit commitment outcomes, while also enabling mid-merit and 
peaker units with lower start costs to identify time periods where they may wish to trade 
so as to not be dispatched in the market. 

6.2 PLEXOS version 

While the current RA I-SEM PLEXOS model uses PLEXOS version 7.3, there have been a 
number of updates to the PLEXOS software, and PLEXOS version 8.1 is now the most recent 
version. It is recommended the RA’s PLEXOS model is moved to the new version.  

Minor variations were observed in solution results for a specific run due to the following 
model updates: 

 A change in the random number generator changed outage patterns. (Changed 
as of PLEXOS v7.5) 

 Solver upgrades can cause different outage patterns. (Changed as of PLEXOS 
v8.0) 

Some users have noted an increase in run-times compared to version 7.3, however any run-
time changes will be heavily dependent on the hardware used. 
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A table of the aggregate solution changes is shown below. 

Table 11  PLEXOS version aggregate solution changes 

 PLEXOS 7.3 PLEXOS 8.1 Total change % change 

Annual average 
prices 

€47.27 €47.20 -€0.07 -0.2% 

Annual average 
gas generation  

22943 GWh 22886 GWh -57 GWh -0.3% 

Annual average 
GB interconnector 
bid dispatch 

9044 GWh 9089 GWh 44 GWh 0.5% 

6.3 Uplift algorithms 

The model uplift algorithm is a way of ensuring the market pricing in the I-SEM PLEXOS 
models is a closer representation of how traders are incentivised to offer into the market. 
The way uplift is approached in market modelling for the SEM and I-SEM is partially due 
to the history of the SEM market, and partially due to its method of representing behaviours 
otherwise unaccounted for in a marginal cost-based system.  

The SEM worked on the basis of short run marginal pricing with an added uplift 
component. This means that the incremental generation cost formed the core price signal 
(what does the next unit of dispatch cost for a particular plant), while the uplift would add 
additional value to that marginal price to represent generators recovering their start-up and 
no-load costs. When the shadow price is not sufficient to cover the costs for plant which are 
required in the market then an uplift algorithm will generate an adder to the electricity 
price and increase delivered electricity prices to cover these costs. In some markets, such as 
the SEM this was explicitly considered by market operators using algorithms to identify the 
required uplift in each hour. Programs like PLEXOS can replicate a range of these 
algorithms.  

In the I-SEM arrangements there is no explicit uplift added to shadow prices, but the onus 
instead rests on the generators to form their commercial offers such that they can recover 
start-up and no-load costs in addition to incremental generation costs. Therefore, these 
elements are incorporated in the market offers, rather than addressed as a separate 
component.  

One of the market mechanisms through which generators can signal this willingness to run 
only at prices which allow them to recover these costs is the minimum income signal which 
can form part of the complex bid and offer types in the market. These would represent a 
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value that would incorporate both these start costs and their expected marginal generation 
costs if they were dispatched into the market.  

Under the backcast analysis it is described how closely uplift mechanisms appear to 
replicate these minimum income conditions across a range of generation units.  

6.3.1 In-built uplift algorithm vs customised generator mark-ups or 

algorithm  

The 2019-2023 I-SEM Validated PLEXOS Model includes uplift, which is not a direct 
reflection of market price formation for the I-SEM as uplift is not explicitly considered in 
the EUPHEMIA market settlement algorithm. In PLEXOS modelling uplift reflects that 
generators will seek to recover the start-up and no-load costs from the market. Therefore, 
bids into the I-SEM can be expected to be structured so as to cover these costs, and the prices 
delivered by the market will continue to incorporate these components in some form.  

The key alternative to any standardised uplift algorithm applied across the entire model is 
to individually apply the uplift components observed for each generator in their bid and 
offer behaviour to the market. This approach may improve how well the model outcomes 
reflect the market over a historical time period, but at the expense of a maintainable and 
appropriate forward-looking perspective.  

The second alternative is to customise an uplift algorithm for the PLEXOS model based on 
observed I-SEM trading behaviours. This approach may be appropriate once sufficient 
market data is available across a range of different market conditions.  

These approaches are limited as bidding behaviours of past traders are not necessarily the 
best representation of future expected bidding behaviours. They are therefore unlikely to 
be a strong representation across the five-year forward-looking timeframe. This is 
particularly true for new generation plant where the trading behaviours are unknown. 

Likewise, at present there is very limited historical data on which to base either an 
individualised estimation, or from which to develop a market-specific uplift algorithm. 

This is because trading behaviours in a steady state market will vary significantly by month 
based on expected demand, wind and fuel prices. A monthly level is the highest level of 
discretisation at which the analysis on which to base such an algorithm, could be reasonably 
undertaken. For more mature markets, a weekly discretisation would be more suitable.  

Moreover, within the month there will be significant and notable differences between 
weekends and weekdays, between peak and off-peak hours and based on expectations of 
demand and wind as formed by the weather. This means that the single year of trading 
data from the I-SEM effectively gives us a sample size of ~21 weekdays for each trading 
period depending on the month and ~10 weekend days for each hour depending on the 
month. All of these samples represent how traders traded in a single year’s worth of 
underlying market conditions, and while they were encountering each month-by-month 
set of weather and demand patterns for the first time since I-SEM launch. It is recommended 
that the customised algorithm option be re-evaluated once more extensive market data is 
available. 
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6.3.2 Korean uplift vs SEM uplift 

The two pre-programmed uplift algorithms available in the PLEXOS model are the “Korean 
Uplift” algorithm and the “SEM Uplift” algorithm. Each of these will be briefly described 
before discussing how well they represent price outcomes seen in the I-SEM to-date. 

The Korean uplift algorithm as inputted into PLEXOS mimics a cost-based pool and uses a 
piece-wise linear function to represent start costs from each of the three possible start states 
(hot, warm, cold). In contrast the SEM algorithm represents the uplift mechanism which 
was used as part of the SEM market and it uses a stepwise function to represent start costs 
from each of the three possible start states (hot, warm, cold). An example is shown on the 
diagram below. 

Figure 14  Start costs in SEM uplift algorithm, vs Korean uplift algorithm 

 

Each algorithm has certain benefits and drawbacks: 

 The Korean uplift algorithm is a better representation of the operational realities 
of thermal plant cooling. A plant doesn’t instantly change from being in a hot 
state to a warm state because it reaches a particular set boundary. In practice 
the cooling process is gradual and so at least some portion of the accrued costs 
will be linearly related to that cooling trajectory.  

 The SEM uplift reflects how generators were accustomed to receiving their 
uplift reimbursement and so the trading behaviours may reflect an expectation 
of recovering costs in this way. Typically, internal cost-estimation 
methodologies will take time to evolve even after a large market design shift. 
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 Market bids and offers can be expected to reflect a greater level of risk-
averseness than is currently accounted for in the Korean uplift algorithm. This 
represents their internal hedging against the risk that their plant may be 
committed to the market for only a short period of time which leaves them 
unable to fully recover their start costs. One method used in the market bids 
presented to market to protect against this risk will be the minimum income 
requirement component of complex bids. 

 Market bids and offers can be expected to reflect higher prices than simple 
uplift-based cost recovery mechanisms may account for when the demand 
response is sufficiently inelastic for certain portions of the electricity demand 
curve. Typically, generators are incentivised to price their bids and offers for 
the highest price that they believe the market is willing to pay to dispatch their 
units at. In portions of the supply curve where demand is inelastic and there 
are limited alternative generation suppliers who are able to meet that market 
need, then suppliers are incentivised to incorporate scarcity rents into the offer 
and bid pricing.  

Ultimately the mechanisms used to incorporate any uplift to underlying cost drivers in the 
I-SEM will be down to the trader’s discretion and will be done the day before. This means 
they may reflect the risk of starting a plant from multiple possible heat states. Thus, the 
smoothing introduced by the Korean uplift algorithm may well be a better representation 
of cost drivers in the long term.  

Based on the assessment of price, interconnector and generation outcomes, the aggregate 
difference between the Korean uplift algorithm and SEM algorithm is minimal (the SEM 
produces prices €0.06 lower than the Korean). The Korean algorithm is a slightly better 
representation of the prices seen so far since the launch of I-SEM. This is primarily due to a 
slightly better representation of the shape of prices – peak prices are more appropriately 
captured in comparison to real market outcomes.  

For these reasons it is recommended to retain the Korean uplift algorithm unless there is 
sufficient evidence from market outcomes that the SEM algorithm or a custom uplift 
algorithm would result in a better representation of the market.  

6.4 Scarcity pricing 

Scarcity rents are more likely to eventuate in the I-SEM (unlike the SEM) when the supply-
demand balance is tight since generators are not constrained to bidding based directly on 
generation costs.  

Scarcity pricing is not explicitly included in this I-SEM validated model. This is primarily 
because so far only a single year of market data is available, which makes it difficult to 
separate behaviours responding to unique annual characteristics from behaviours which 
will regularly recur in the market. It is recommended that evidence for scarcity rentals 
continues to be monitored across future backcasts to re-evaluate the usefulness of including 
scarcity rentals in the PLEXOS model. 
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As described in section 7.2.2 below, if there are scarcity rents being commanded in the 
market they are unlikely to be solely related to the total supply-demand capacity margin. 
However, they may be driven by scarcity in specific subsets of the supply-demand curve, 
for example when there is high wind and demand volatility but only a few units already 
committed to generate. Across the 2018-2019 I-SEM market period there was almost no 
evidence to suggest scarcity rentals in the market across winter months, while in summer 
months there was some indication that significant scarcity rentals may be entering the 
market on very low wind generation or high wind volatility days. A single year of data is 
insufficient to confirm whether these outcomes are likely to continue to be observed.  

6.5 MIP vs RR 

MIP (Mixed-Integer Programming) and Rounded Relaxation (RR) are two different 
methods for approaching the classic unit-commitment problem which underpins power-
sector modelling. The unit commitment problem arises because power plant units are 
typically either in an online or offline mode. An electricity system pricing, scheduling and 
dispatching model such as PLEXOS will need to reflect the difference between these states 
in order to provide an accurate representation of the real system dispatches.  

 Online – when a generation unit is in an online state then they are able to be 
dispatched across a range of different generation levels. However, for many 
units they will often have a required minimum stable loading while they are in 
an online state. This can mean that higher priced generation is dispatched rather 
than lower priced alternatives in a given hour so as to ensure the minimum 
stable generation requirements for a plant are continuously met. Thus, keeping 
a plant online may result in a more expensive market solution than switching 
the plant off and then back on again.  

 Offline – when a generation unit is in an offline state then they are can only be 
dispatched by incurring start costs associated with switching on. Some units 
may have a minimum amount of offline time after being shut off. Units may 
also have a minimum amount of online time when switched on. There may also 
be a time cost as some plant will have a long start period due to ramping 
constraints. Thus, switching a plant off and then back on again may result in a 
more expensive market solution than leaving a plant online. 

Unit-commitment optimization methods are designed to evaluate these potential costs so 
as to determine the state of each unit in each hour based on minimising the over-all system 
costs for each day while respecting the operational constraints on the unit.  

Since there are only two possible discrete states for each plant this is a non-linear system 
element. Optimizing non-linear problems can be problematic, this is primarily due to 
significantly increased computing times for each integer variable in the system. PLEXOS 
offers three standard options for optimising unit commitment: 

1. Linear Relaxation. This allows the non-linear dispatch to be converted to a 
linear problem. While this has rapid solve-times it also simplifies the system to 
allow all units to be partially online rather than simply in an online or offline 
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state. Typically, this results in less realistic dispatch solutions and lower prices 
than what will be seen in the real market.  

2. Rounded Relaxation. This method performs an initial solve based on a linear 
relaxation, then determines the online/offline state of each unit based on 
whether their unit commitment dispatched in the linear solution meets a certain 
threshold. For example, if a unit is 70% online and the threshold is 60% then the 
solution would round this up to dispatch this unit as online. Whereas another 
unit which is only 50% online would be rounded down so it was offline. The 
unit commitment is significantly better than linear relaxation alone but may 
result in unit-commitment outcomes that are not fully optimised. The self-
tuning feature in PLEXOS improves the solution quality by iteratively testing 
out the solution with a set of different commitment thresholds (e.g. 10%, 40%, 
70%, 90%) then selects the least-cost system solution. 

3. Mixed Integer Programming. This is an algorithm which will determine the 
optimal least-cost unit commitment decision. Typically, this produces lower-
cost solutions for the market, but takes significantly longer to run. Additionally, 
there can be solution stability issues where there are several different unit 
commitment outcomes which produce the same over-all cost of supply for the 
market. In these circumstances then small differences in solution inputs may 
also result in significant changes to the portfolio of units which are committed 
to market over a given time-period.11 

It is recommended that the RAs continue to use RR, as in previous models. This currently 
represents a reasonable trade-off between solution accuracy and computational time. It is 
further recommended that RR self-tune settings remain at 0.2 self-tune increment with a 
minimum threshold set to 0.1 and a maximum threshold set to 0.9. Changes to the self-
tuning settings did not result in significant solution or run-time improvements. However, 
it is also recommended to continue reviewing and considering the option of using MIP in 
future market models.  

Typically, if unit-based behaviours can be appropriately replicated by an RR approach then 
the simpler approach can provide increased visibility of aggregate market drivers as the 
market matures. If RR algorithms are unable to replicate the unit-based behaviours 
appropriately across the market, then MIP can provide additional insight. It is important to 
ensure that additional complexity is only added into the modelling methodologies when it 
appropriately reflects the real market complexity. This is best assessed once a market has 
reached maturity. 

 
11 This can significantly impact the quality of unit-based dispatch outcomes from the market 
model. When integer constraints were introduced to model interconnector states in the NZ market 
this problem created significant oscillations in scheduling, pricing and dispatch outcomes and was 
subsequently revised. 
See discussion of wealth transfers as MIP solutions approach optimality in Sioshansi R, O’Neill R & 
Oren S S, “Economic Consequences of Alternative Solution Methods for Centralized Unit 
Commitment in Day-Ahead Electricity Markets” IEEE Transactions on Power Systems, May 2008, 
Vol. 23, No. 2, pg 344-352. Note: Despite the similar names, the other methodology used for 
comparison in this paper is not Rounded Relaxation. 
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The use of Linear Relaxation is not recommended as it cannot appropriately reflect the unit-
commitment costs which are present in the I-SEM.  

When evaluating the trade-offs between MIP and RR the solution outcomes were evaluated 
against actual I-SEM market results as part of the backcast. For further analysis on this see 
section 8.4. 

Overall, it was found the MIP option increased annual average prices  across the 2020 year 
by €0.27 and increased runtimes by between 7-20 times the RR runtimes.12  Since longer 
run-times of this scale have the potential to adversely impact the delivery of regular 
analysis as part of regulatory process, this was deemed as unsuitable. 

However, the calibration against real I-SEM data indicated that MIP was able to deliver a 
better replication of some market conditions. This was particularly seen in the summer 
months, while the winter months were more closely replicated by RR in most months. Thus, 
it is recommended that further analysis is undertaken on the impact of model simplification 
options on solution quality. Testing of these options was out of scope for the current process 
due to time constraints, however this is recommended for consideration in future validation 
and backcast exercises. 

The core options for reducing this run-time are identified in the NERA Validation Report 
for I-SEM PLEXOS Model, 2018-2023. These include: 

• Increasing the Relative Gap - this is the stopping point at which the MIP solution is 
considered a sufficiently high-quality solution to be acceptable when compared to 
the constrained linear version of the same problem.13  

• Reducing the number of samples of load, wind and forced outages - this may 
significantly reduce the robustness of solutions to a range of future expected 
outcomes as it means that quality of results is very dependent on which sample (or 
set of samples) is chosen as representative. 

• Representing the start-state of a plant by a single start state, rather than three – the 
current representation allows for three start states for generating units (hot, warm 
and cold). This improves the quality of the information about each unit in the model 
but may increase run-time. 

6.6 Price cap and floor 

Cap and floor levels have not changed and are maintained at €3000/MWh and -
€500/MWh.  

 
12 The  Baringa Model Validation Information Paper (2018-2019) reported an increase of 100x RR 
runtimes. This increase was not replicated in the results of this validation yet this indicates that 
much higher runtimes are a risk. Runtimes can also be impacted on the maximum allowable time 
for a sufficiently optimal MIP solution to be found. If this cannot be found in the designated time 
then PLEXOS will instead seek an acceptable RR outcome. 
13 The value changes resulting from different relative gap settings was not assessed as part of this 
validation. It is recommended that these options be further assessed in the future. 
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7 Initial backcast 

7.1 Methodology 

The backcast methodology which was used for this exercise is described in the following 
diagram. 

Figure 15  Backcast methodology 

 

7.2 Observations on market behaviours 

With the launch of the I-SEM, there is a significant shift in the available information for 
market analysis. The aggregate outcomes should remain broadly similar since both the 
model and market will continue to be driven by fundamental generation cost, and demand 
economics. However the actual formation of bids and offers from an individual participant 
will be based more directly on how that participant’s views of these fundamental drivers 
have shifted over time, how other participant’s views of these fundamental drivers have 
shifted over time, and how these are woven into the bilateral arrangements they have in 
place to respond to these drivers.  
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7.2.1 Supply and demand – DAM vs gross actual 

At this stage, there is only a year of DAM supply and demand data. The DAM data will 
differ from the historical gross system supply and demand for a number of reasons.14 

 At the time the DAM clears the expected demand and wind offers are based on 
the forecast generation and expected wind.  

 Not all energy generated and consumed will clear through the DAM.  

In this section firstly the scheduled (DAM) and gross actual (EirGrid) wind and demand 
profile inputs are compared to see whether there is sufficient information to predict 
forward-looking DAM inputs based on their relationship to historical actual 
generation/demand values. Secondly this section contains an overview of the differences 
between backcast outcomes using scheduled (DAM) and actual (EirGrid) wind and 
demand profile inputs to the PLEXOS model. 

Scheduled (DAM) inputs vs gross actual (EirGrid) inputs 

The analysis of wind and demand inputs confirmed that the predictive relationship 
between scheduled (DAM) inputs and actual (EirGrid) inputs is not sufficiently robust to 
construct future expected DAM inputs based on historical observed bid patterns and 
forecast demand and wind levels.  

For the purposes of validating whether or not the forward-looking market model represents 
the DAM appropriately, using DAM data presents some difficulties. As there is only a 
single year of DAM data, there is insufficient information on historical trends to form a 
sound basis from which to create forward-looking demand and wind profiles.  

In the absence of this data-source - if a clear predictive relationship could be established 
between scheduled hourly (DAM) inputs and actual (EirGrid) values - then similar inputs 
could be constructed based on existing historical actual (EirGrid) datasets and the future 
expected projected demand and wind values (from the GCS). The analysis, however, 
indicates that there is insufficient evidence to establish a clear predictive relationship 
between these data-sources at this stage. 

Differences between the scheduled hourly (DAM) inputs and the actual (Balancing Market) 
outcomes varied significantly by hour. There was no discernible trend underpinning these 
hourly differences within each month. However, there was evidence that the level of these 
input differences was reduced in summer months.  

There is significant variation in the proportional representation of these system 
characteristics when comparing the DAM values with the gross actual values. This implies 
that in order to construct future expected scenarios which were based on DAM cleared 
values for the steady state without any changes to the generation fleet a significantly larger 
sample set would be required.   

 
14 In this instance gross system inputs are represented by whole-of-system actual data as developed 
from SCADA readings or directly supplied by EirGrid. 
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However, this alone is insufficient since for forward-looking supply and demand it is 
unclear how much of it will clear through the day ahead process, or which types of future 
demand/supply participants are more likely to directly participate through the DAM.  

Since part of the purpose of the backcast is to better understand how well the forward-
looking model setup would replicate the historical behaviour, the backcast has been 
performed using gross actual historical values.  

Backcast using scheduled (DAM) inputs vs actual (EirGrid) inputs 

To confirm whether this approach is robust the model was tested over the backcast 
timeframe directly using historical DAM demand and wind values.  

The aggregate outcomes on interconnector flows, generation, and prices were on average a 
very similar fit to those developed from using actual values. It was noted that in December 
and January the DAM wind and demand inputs captured the high-priced periods more 
accurately. However, in other months, the appropriateness of the fit was either similar or 
worse than those developed from the actual wind and demand inputs. 

This test, however, indicated that using the gross actual inputs gave us a sufficiently sound 
representation of the DAM dynamics. The appropriateness of this fit should continue to be 
monitored as more actual live market data from the DAM becomes available.  

7.2.2 Additional market elements 

Minimum income conditions 

The I-SEM introduced a complex bid format which allows participants to input offers with 
Minimum Income Conditions. These require that a certain income threshold is met for that 
generator across the day in order for them to be dispatched. 

When the system is not in stressed conditions this offer-type typically has minimal impact 
on the market solution compared to a generator cost driven model which includes an uplift. 
This is because participants are always incentivised to shape all their trading behaviours 
based on making a profit against their estimate of the cost of supplying. For example: 

 If a generator expects to already be running, has a high cost of start-up, and 
there is a risk of not being dispatched; then the participant will typically be 
incentivised to reflect a lower estimate of start/stop costs, and consequently a 
lower minimum income condition. This is similar to how an uplift algorithm 
applied to a similar plant will discover a good solution is to incur start-costs less 
frequently and to distribute the potential start-costs over a larger number of 
time periods, lowering the offered price and ensuring it is more likely to be 
dispatched in the market.  

 If a generator expects not to be running, has a high cost of start-up, and there is 
the risk of being dispatched for a small number of periods at a marginally 
profitable price; then the participant will typically be incentivised to reflect a 
higher estimate of start/stop costs, and consequently a higher minimum 
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income condition. This is similar to how an uplift algorithm applied to a similar 
plant will discover that higher start-costs would be incurred if the plant is 
switched on, and the higher cost would be distributed over a small number of 
potential running time periods. The resultant raised offered price will operate 
like a high minimum income condition by ensuring that the plant is less likely 
to be dispatched in the market when the expected income does not meet the 
profitability threshold.  

The impact of these decisions is likely to influence generator dispatch in a similar way to 
how the uplift algorithms would. However, the overall market solution is unlikely to be 
significantly changed when there are a large number of substitutable generators at each 
stage of the supply curve. For a market which is not under stress15 when any supplier 
shapes offers to exercise market power via the minimum income condition then the other 
suppliers would be incentivised to undercut their offer.  

Under stressed market conditions the minimum income condition could also be used to 
reflect recovery of scarcity rentals. This would typically occur in the situation where there 
is significantly lower than typical intermittent generation in the market, and certain 
participants are confident they will be dispatched into the market. 

If a participant is confident they will be dispatched into the market that day for a wide 
range of possible offer prices, then they are incentivised to increase the prices in their offers 
and bids and recover additional profit from the market. The minimum income condition is 
one of the mechanisms that can be used to ensure significant return on generation across 
the entire day. This allows participants to leverage the fact that the capacity they provide 
may be required to cover the peak time periods and recover a certain income across the 
day. 

Instead of using the simple bids and offers to achieve the same outcome, the minimum 
income condition allows the market to achieve a least cost solution which, for example may 
result in higher prices across the day, rather than much higher peak prices.  

In practice the intended impact of minimum income conditions set by a particular plant can 
be difficult to determine. For example, pricing shaped by true risk aversion could be viewed 
by another participant as an intentional method of procuring scarcity rentals. Based on 
analysis across the year it seems likely that during times of market stress participants did 
incorporate scarcity rentals or additional risk aversion in their bidding behaviours. The 
potential for these behaviours varied significantly by month, with the strongest potential 
seen in mid-summer months (June, July, August). 

There is insufficient data at this stage to form a view on how these behaviours would be 
best represented in the model, and on whether they are likely to continue as the I-SEM 
matures. However, it is recommended that the relationship between low intermittent 
generation quantities, minimum income conditions, and bid behaviour more generally 
should continue to be monitored. If the next few years indicate a statistically predictable 
and regularly observable behaviour is shaping these market offers then it may well be 

 
15 A market could be considered under stress when there is low marginal capacity in the 
generation/supply balance. This is typically due to some combination of particularly high peak 
demand, particularly low wind, or large generation system outages.  
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appropriate to consider developing a custom uplift algorithm to better represent these 
scarcity elements in the I-SEM PLEXOS model.  

In general scarcity rentals are not always a modelling problem – they can sometimes be an 
indication that refinements should be considered in the market itself. Typically, the 
appearance of scarcity rents is a sign of market stress which is an investment signal that 
more plant needs to be built. If there are persistent scarcity rents which are not naturally 
resulting in increased investment in plant with appropriate characteristics to meet the 
specific system conditions when they are incurred, then further regulatory analysis may 
promote better long-term SEM market outcomes. 

Assetless traders 

Assetless traders are a class of market participants which were introduced through the 
launch of I-SEM. These are participants trading in a way which is de-coupled from physical 
assets and can both buy and sell energy in the ex-ante markets.  

In international electricity markets, assetless traders are well-established conduits for 
introducing additional liquidity and enabling a more dynamic transfer of different 
participants risk appetites and future expectations of market price and dispatch trends. 
However, their activities are always driven by two key elements – the willingness of a 
generator or demand-side participant to sell a volume of electricity to them at a given price, 
and the willingness of other participants or the market to purchase that electricity off them 
at a given price. 

The price estimates which determine the willingness of participants to sell are driven 
primarily by their estimate of generation costs to produce the sold electricity, and secondly 
their belief that selling it at the received price is either more profitable or less risky for their 
company than trading it into the ex-ante markets themselves.  

Likewise, the price estimates which determine the willingness of the ex-ante markets or 
other participants to purchase this electricity is based on their belief that it is either less 
expensive, or less risky than purchasing the same electricity directly from the market itself. 
Specifically, this means that they believe it is either less volatile or priced lower than the 
cost-driven market bids and offers they would reasonably expect to see.  

In liquid traded electricity markets under an equilibrium state, the assetless traders will 
only have market-price setting power when they are acting as a proxy (directly or 
indirectly) for a unit which would itself have market-price setting power. This means that 
typically the aggregate unit dispatch and pricing outcomes remain largely similar. 
However, the uncertainty and time value of information may have been traded from one 
participant to another. 

If there is insufficient market liquidity then assetless traders can, like generators, offer in 
such a way as to recover scarcity rents or to take advantage of market volatility. Again, 
there is no inherent reason why this should alter the fundamental economics of the market 
in a way which is differentiable from any other trading entity with a portfolio position in 
electricity supply or demand.  

In general, the outcomes of this style of rational economic behaviour would be consistent 
with a generator-cost driven fundamental market model. Confirming whether assetless 
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trader behaviour follows rational economic behaviour at steady state in practice would 
require at least a few years data.  

Assetless traders are not explicitly represented in the model but assumed to be represented 
by generators and demand side participants willingness to purchase/sell electricity in 
accordance with their generation-cost driven estimates. At this stage there is insufficient 
evidence to infer either that assetless trader behaviour has or has not deviated from these 
norms under steady state. Similarly, a single year is insufficient to give a picture of how 
these behaviours may evolve over time.  

7.3 Inputs 

The key model inputs which were updated to reflect actual values across the backcast 
period are summarised in the table below. 

Table 12  Backcast key historical inputs 

Data Type Data Source Comparison 

Commodity pricing Historical day ahead 
commodity prices and FX 

rates 

Bloomberg N/A 

Commodity pricing Fuel adders  RAs and data from 
generators 

N/A 

Demand Actual hourly dispatch. Developed from EirGrid 
15-minute metered data 

DAM offered demand 
quantities 

Wind  Actual hourly dispatch. Developed from EirGrid 
15-minute metered data 

DAM offered wind 
quantities 

Interconnectors Historical day ahead 
interconnector transfer 

capacities 

ENTSO-E DAM interconnector 
capacity levels 

Outages/output restrictions Historical outage and 
output restrictions 

(including forced outages)  

System Operators ENTSO-E 

Forward-looking 
weekly reports 

Generator 
technical/commercial 
parameters 

Includes VOM costs, 
operating costs and heat-

rates. As per input 
validation. 

Generators N/A 

GB prices Actual hourly DA prices N2 EX DA Auction Prices ENTSO-E 

  

Commodity pricing: Historical actual fuel prices, carbon prices and exchange rates are used 
to calculate the actual commodity prices in combination with actual fuel adders. The plant 
fuel prices are then fed into the model. 

Demand and wind: Demand and wind actual historical profiles are created from actual 
hourly data and wind installed capacity data.   

Interconnectors: Historical DA interconnector transfer capacities are applied to both Moyle 
and EWIC. 
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Outages: Historical outages provided by the TSOs across the backcast period are applied 
to the backcast model. 

Generator technical and commercial parameters: The data provided by the generators has 
been used to update the backcast model. These include updates to heat-rates, ramp rates, 
min up and down times, VOM costs and start costs. 

GB Price: Actual DA GB wholesale electricity prices are used to provide assurance in the 
backcast that the SEM model performs appropriately against real market price data. This 
allows us to consider the impact of the different potential GB models independently from 
other market model elements (see section 8.3.2). 

The historical data for each of these categories are inputs to the backcast model. This 
ensures the real historical events which shaped the market outcomes are captured in the 
model inputs, so that model outputs can be expected to more closely match actual market 
results.  

NOTE: The initial backcast period was carried out from I-SEM launch on the 1st of October 
2018 until 30th June 2019, this was based on the data available when the backcast exercise 
commenced. Following months were then incorporated later in the process, prior to the 
event and seasonal analysis commencing. For these reasons, reported outcomes differ from 
those presented at the December 2019 Stakeholder workshop.  

7.4 Outcomes 

In this section the initial outcomes are outlined from backcast simulations with the input 
changes mentioned above. These represent the initial rough fit between model results and 
actual results based on the raw inputs alone before identifying any areas where the model 
was a poor fit for actual outcomes and re-calibrating the model to construct a better fit. 

For the purposes of calibration GB electricity DA prices are forced to be equal to the actual 
historical DA prices. This demonstrate the model’s ability to correctly simulate SEM price 
and dispatch outcomes assuming that the GB price is not impacted by the SEM. This was 
used as the basis for the initial outcomes, and the backcast calibration and refinement.  

However, a key outcome from undertaking a backcast is to validate the appropriateness of 
the forward-looking model (including its representation of GB). Hence, the model 
outcomes produced using actual GB prices also comprises the first methodology as part of 
testing the GB model set-up for the forward-looking model as described in section 8.3.2.  

The final backcast results in Table 16 through Table 18 below include values for the backcast 
using actual GB prices, as well as those using the selected GB model. 

Historical data for model comparisons 

In order to compare and later calibrate the backcast model outputs, the data summarised 
below was used. 
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Table 13  Historical data for backcast model comparisons 

Data Source 

SEM DAM wholesale electricity prices RAs 

GB DA wholesale electricity prices RAs 

Expected interconnector transfer direction RAs 

Interconnector actual flows RAs 

Generation RAs 

Prices 

The following figure provides a comparison between modelled and actual monthly average 
DA prices. The modelled results are mostly in line across winter, apart from two winter 
months (Dec-Jan). However, the modelled results consistently underestimated prices across 
the summer months (May-Sep). Across the backcast modelling horizon (Oct 2019 – Oct 
2020) the average modelled price is -5.8% lower than actual. This is a larger difference than 
the initial result reported at the stakeholder engagement in December 2019 (3.6% lower than 
actual) which was based on a backcast from October to June as data was not available 
beyond that point at that time.  

Modelled prices across winter are within reasonable bounds, with most months falling 
within a ± 10% variation threshold, and the aggregate deviation is within a ±5% threshold. 
However, variation in modelled prices across the summer months exceeds these thresholds 
as will be discussed in further detail below. As this backcast is only observing a single year 
of data, and the deviation is only 0.8% more than the desired threshold, this may be a 
marginally acceptable result, but requires further exploration below. 

Experience in other markets indicates that a ±5% threshold is an appropriate fit when fitting 
against 3-5 years of real market data. Given this backcast comparison is against a single 
annual sample and is fitted over the initial market time period it is reasonable to expect 
greater deviation between the modelled and market outcomes. To ensure a future-proof 
model it should not be over-fitted based on data from a new and evolving market. In light 
of this balancing act, and since the key price differences can be attributed to specific events 
where the market experienced stress, this result can be considered acceptable.  

Event-based differences and differences in winter and summer months are explored in 
more detail in the sections below. 
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Figure 16  SEM DAM backcast price comparison 

 

In general, at an hourly granularity, prices are a strong representation of real market 
outcomes. While there are some variations in the price curve compared to actual outcomes 
the shape of the curve mostly captures the peaks and troughs on aggregate. The key 
limitations discovered were that some peaks and troughs do not have the same depth as 
those observed in the market, that prices were consistently slightly lower across summer 
and that during specific times of atypical low wind generation the modelled results didn’t 
fully capture the market price volatility. An indicative period is shown on the graph below, 
as can be seen, the greatest variation tends to be in the peak priced periods. However, there 
are some of the areas of worse fit which will be described in greater detail in section 8.1 and 
section 8.2 below. 

Figure 17  Hourly price comparison – indicative period 23/03 – 09/04/2019  

 
 

0

10

20

30

40

50

60

70

80

90

€
/M

W
h

Model Actual

0

20

40

60

80

100

120

140

160

€
/M

W
h

Hours

Model Actual



Initial backcast 

 

ECA - Input Validation and Backcast Report 59  

Generation 

The following figure describes the comparison between actual and modelled generation. 
These comparisons were carried out throughout the backcast period. This analysis is 
extended to observe generation across baseload, mid-merit and peaking plant types, and in 
some representative instances investigated to a unit level. 

In general, the generation split per fuel category is a strong match with all categories within 
a 3% range for annual average. The largest differences were driven by higher gas dispatch 
levels than was historically seen. The cause of this was discovered to be high interconnector 
flows. The interconnector flows themselves will be discussed in the section below.  

Wind has been excluded from the graph as it is an input which forces the model to generate 
actual historical generation. 

Figure 18  Generation split comparison per fuel type – backcast vs actual 

 

 

Note: Generation split refers to percentage of total generation met per fuel category 

The largest differences were seen in gas generation dispatch – the differences were largest 
for the Republic of Ireland gas generators across the summer months. This appears to be a 
response to lower modelled prices for the SEM. These lower SEM prices in the model 
resulted in transfer from the SEM into GB being more economically efficient in the model. 
However, high SEM prices in the market meant transfer from GB into the SEM was more 
economically efficient in the market outcomes. For the NI gas generators, the greatest 
differences were seen in December and January. These differences may be a contributing 
factor in why the market-based scarcity events (described in section 8.1) were not replicated 
fully by the market model.  
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Figure 19  Monthly gas generation comparison modelled vs actual 

 

Interconnector flows 

As part of the initial backcast review, the differences between actual and modelled 
interconnector flows were explored. Reviewing the initial flow results against actual flow 
in Figure 20 the model appears to be overestimating flows from west to east and 
underestimating flows from east to west throughout the year.  

The key drivers of these differences seem to be: 

• Lack of differentiation in the modelling of GB supply curve - while the GB price 
is set to replicate actual values, this price is available uniformly across the entire 
transfer capacity without transmission limits or competing alternatives. This means 
that when the GB price is higher than the SEM price the model is incentivised to 
transfer energy to GB up to the full available capacity of the interconnectors. In 
practice the interconnector flows tend to be more nuanced reflecting the GB’s 
multiple different supply options. This is particularly the case in trading periods 
where there is high price volatility in GB. 

• Unit commitments and uplift in Ireland – the high flows created by the inelasticity 
of GB price modelling means that modelled generators in the SEM will stop and 
start less frequently. The continued value of transfer into GB will incentivise them 
to remain on, rather than switching on and off as they would in practice. This 
lowers the total quantity of start-costs which are being recovered via the uplift 
mechanisms. The longer run times and generation volumes also mean that these 
costs are spread over a much larger volume, reducing their impact on each 
individual marginal price, and resulting in a SEM price which is lower than actual. 
In general, the reduced uplift in Ireland means that on average the GB price is 
higher than the price in the SEM incentivising flows to increase further.   

• Additional seasonal uplift in Ireland across summer – the model outcomes imply 
that there is an additional uplift to offered generation across summer which is not 
currently captured by the model parameters. This could be due to unusual 
conditions in the one-year sample used to calibrate the backcast against, and there 
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is a risk that introducing such an element may over-fit the model. However, if 
future backcasts consistently show this effect then the option of manually 
replicating this uplift should be considered.   

There appear to be some seasonal differences in relation to flows. The model produces a 
less compelling fit to historical behaviour in summer months. This is explored in more 
detail in the sections below. 

Interconnector flows were the key driver of differences between aggregate generation 
quantities described above. Interconnector flows also appeared to have a dampening effect 
on peak prices during times where the system would otherwise be undergoing periods of 
stress due to lower intermittent generation levels. 

Flows and different GB modelling approaches were explored and are covered in more 
detail in section 8.3.2.  

Figure 20  Interconnector flow duration curve – backcast vs actual 

 
Note: Data refers to hourly flows for the backcast period: 1st Oct 2018 to 30th June 2019 
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8 Backcast calibration and refinement 

Once the initial backcast is performed then the initial results are used to identify areas 
where the market model did not replicate historical behaviours well across the backcast 
time period. These areas are then explored to discover what is driving those differences and 
evaluate whether or not the learnings from these are appropriate to be integrated back into 
the model. 

8.1 Event-based analysis 

Winter events 

When comparing actual market results against modelled results it was evident that the 
winter months of December 2018 and January 2019 were less of a match compared to other 
months 

Following further investigation, it appeared that this was primarily due to limited and 
isolated peak hours where the model was not picking up the scale of peak prices observed 
in the SEM market.  

Further investigation revealed that these limited hours where the model was not reflecting 
higher market prices were usually identifiable as having atypical low or volatile wind 
generation. Figure 21 illustrates the monthly SEM average DAM price comparison if these 
limited hours are omitted. The comparison shows that when excluding these atypical hours 
(~50 hours in each of the affected months in winter) the overall model-fit through winter 
was very strong. 
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Figure 21  DAM SEM price comparison (excluding winter atypical intermittent generation 
hours) 

 

Summer events 

The summer months of May 2019 through September 2019 less closely matched market 
outcomes compared to other months. 

A similar investigation into the May through September time period identified further 
periods where atypical low or volatile wind was resulting in higher market price outcomes 
from the market than those shown in the model. There were a larger quantity of these times 
across the summer months – partially due to the specific annual weather pattern, and 
partially because at lower load levels there are typically more units which are in an offline 
state. However, in absolute terms these market prices did not appear to be triggered solely 
by system scarcity. Further units in the market were available to be dispatched but were 
not dispatched in the market solution. 

These outcomes were distinctly different from those seen in December and January – in the 
winter events the PLEXOS model replicated a high peak price, but the height was not as 
large as that seen in the market. In the summer events there was very little additional 
volatility shown in the PLEXOS model solution, while the market had moderate and 
sustained higher prices.  

Six key examples were identified, each spanning one to six days, and with at least one 
occurring in each of the summer months. Given the frequency with which these events were 
occurring within this season for a given year this seems to indicate that the PLEXOS model 
may not perform as well under these periods of very low wind. However, since there is 
only a single year of data it is difficult to determine whether this was due to unusual annual 
conditions, or due to a systemic modelling methodology element.  

In market terms a possible cause for this difference is that these underlying conditions result 
in heightened market risk for participants. A given unit may not be confident whether 
market prices and dispatch outcomes for their unit are likely to justify the start-costs, and 
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conditions to ensure they are only dispatched when they are confident of making a 
profitable return on generation.  

These price events may also be difficult to replicate in the PLEXOS model where there is 
significant within-day wind uncertainty. The PLEXOS model uses perfect foresight of the 
daily wind forecast when scheduling units. This exposes units to lower risk when incurring 
unit commitment costs, as the actual wind generation values are already predicted 
accurately.  

If these summer events continue to be seen when a backcast is performed over multiple 
years of data, then it is unlikely to be due to unique annual conditions. If so, then options 
should be explored for better modelling summer-time price volatility in the PLEXOS model.  

In order to identify overarching seasonal price trends in the following section, these higher 
price volatility outcomes are normalised. This produced an annual set of prices as shown 
on the graph below. As will be discussed in section 8.2, even once these more volatile 
trading periods are excluded from the summer months there continues to be lower prices 
produced by the model during the summer season. Once these extreme price events were 
removed the backcast price variation improved from -5.8% variation to -2.1% price 
variation from observed actuals. These events accounted for ~50-100 hours in each of the 
affected summer months.  

 
Figure 22  DAM SEM price comparison (excluding all atypical intermittent generation hours) 
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were not reflected fully in the model. The scale of this difference can be seen once extreme 
pricing events are omitted as shown on the graph in Figure 22  above.  

The second of these was that interconnector flows from the SEM to GB were significantly 
higher than the historical outcomes across those summer months, as shown in Figure 23 
below. 

Figure 23  Flow duration curve comparison May-June 2019 
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may be due to risk-aversion and learning behaviours, unusual weather, or scarcity rentals 
being accrued for certain segments of the supply curve.  

Since the backcast calibrates to a single year of data it is possible that this mark-up is due 
to specific annual characteristics. However, if this continues to be observed in future 
backcasts then it is recommended that further analysis be undertaken on how different 
classes of plant are being dispatched into the market, and what this implies for their offer 
pricing characteristics. 

One of the key drivers of the scale of transfer to GB was again the lack of variability in GB 
prices under different supply conditions. This is worsened across the summer months as 
typically there is lower demand, and so the GB market price formation is more sensitive to 
shifts in intermittent generation supply. Likewise, when there is a smaller number of mid-
merit generators likely to be committed to the market then those generators are likely to 
have additional uplift incorporated into their offered prices to reflect their unwillingness to 
be switched on unless they are guaranteed a profitable return.  

The calibration analysis process indicated that the best way to replicate market conditions 
was to re-evaluate different methods of representing GB available prices and quantities in 
the model. This is described in further detail in section 8.3.2 below. 

8.3 Model 

8.3.1 Mark-ups and uplifts 

Both the SEM and Korean uplift methodologies were assessed against the SEM DAM 
results. It was discovered that while both methodologies were a good fit for the wintertime-
period, the Korean uplift methodology was a slightly stronger fit across the total time 
period. 

Despite being a stronger fit overall for the backcast time period, the Korean uplift 
methodology did not produce mark-ups which were as high as those seen in the market 
across the summer months. This effect was seen consistently across the majority of time 
periods.  

As described in section 8.2 above this difference was partly attributable to the high 
interconnector flows, and corresponding low volatility in unit commitment for mid-merit 
plant. 

However, there was some indication that there may be an additional mark-up component 
contributing to the price formation. It is possible that this was due to additional uncertainty 
in the market from the unusually hot weather during some parts of these months. Equally 
it may also be due to learning behaviours and risk aversion as participants attempt to 
ensure they make profitable decisions as they encounter their first summer in the new SEM 
market. 

It is recommended that the summer months continue to be monitored to determine whether 
this additional uplift trend continues to be present and is statistically significant. If it does 
persist then this may lead to a further review of the market uplift methodology.  
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In performing the model runs the existing confidential mark-ups have been retained. These 
fall into three categories: 

1) Those that represent an unwillingness to bid the final portion of a unit’s capacity 
into the market based on costs alone 

2)  Those that represent an unwillingness to keep plant running overnight 

3) Those that incorporate price differentiation to mid sections of a heat-rate curve for 
a unit. 

It is unlikely that any of these elements would have been eliminated by the launch of I-
SEM, and so the most prudent way forward is to retain these. However, these are 
confidential in nature and are not universally applied. Therefore, it is recommended that 
once multiple years of data (post I-SEM) is available, that some basic analysis be undertaken 
on differences between market dispatch outcomes and model dispatch outcomes for 
various categories of plant. This could provide a basis for some simplified replacements to 
these mark-ups alongside a publishable and transparent methodology for other market 
participants to construct equivalent elements for their own modelling. 

8.3.2 GB modelling and interconnectors 

The interconnection with the GB market provides opportunities for participants in the SEM. 
It can help meet demand requirements at a lower cost, provide security of supply and 
ensure intermittent low carbon energy is best utilised. Therefore, there is a need to represent 
the interconnection with GB via the Moyle and EWIC interconnectors appropriately in the 
SEM PLEXOS model. This was analysed as part of both the backcast and forward-looking 
model validation.  

Ideally, the full GB market would be modelled to the same level of detail as the SEM, 
however this would be very computationally intensive to run, and would be difficult and 
time-consuming to maintain. For these reasons GB has historically been represented 
through a simplified approach which approximates the residual GB supply/demand curve 
which can impact on the SEM via the Moyle and EWIC interconnectors.  

The key components which are important for modelling a representative supply curve for 
GB are: 

 GB Price Representation - Developing a set of representative prices which 
represent the willingness of suppliers to supply energy at a given time. 

 GB Capacity Representation - Developing a set of quantities associated with 
these prices representing the supply/residual demand curve elasticity. These 
identify how much energy can be released or served at a given price level before 
the market will move to a higher price category. 

 Technical Constraint Representation - Developing a set of fixed system 
limitations, either technical or economic constraints which represent the costs 
or physical requirements associated with certain behaviours (e.g. start/stop, or 
minimum loading). 
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 Representing Variable Influences - Developing a representation of risk and 
variable elements that impact on the available supply/residual demand curve 
(e.g. intermittent wind or shaped demand). 

Additionally, modelling methods must be both: 

 Maintainable – this means that the methodology can easily be refreshed and 
revised. Thus, changes in the underlying market conditions can be quickly and 
consistently integrated into the model. 

 Forward-looking – this means that the methodology can be used not only for 
the backcast but also for the forward-looking validated model. Using actual GB 
outcomes can be good for historical analysis but is not necessarily robust into 
the future as the future GB outcomes will be dependent on exogenous factors 
such as gas prices and carbon prices. 

Six different methods were tested against the backcast results and evaluated based on the 
criteria described above. It is noted that there is a significant seasonal difference in fit. In 
general option six was discovered to be the most appropriate due to its balance of strong 
system representation and maintainability. These options are described in greater detail 
below. 

Table 14  Tested GB modelling methods 

No. GB modelling 
method 

Price Capacity Technical Variable 
influences 

Maintainable Forward 
looking 

1 Matching GB prices 
exactly       

2 Heat-rate regression 
against GB prices       

3 Heat-rate regression 
against GB gas 
prices with vertical 
segmentation    

      

4 Heat-rate regression 
against GB gas 
prices with fixed 
component 

      

5 Heat-rate regression 
against GB gas 
prices with horizontal 
segmentation    

      

6 Heat-rate regression 
(with fixed 
component) against 
GB gas prices with 
horizontal 
segmentation and 
intermittent 
generation 

      

For the purposes of the explanation below the following terms are used as follows: 
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 Vertical segmentation is used to describe splitting capacity over several 
identical units (for example an 800 MW unit with a mid-merit heat-rate may be 
split into 4x200MW units with a mid-merit heat-rate) 

 Horizontal segmentation is used to describe splitting capacity into several units 
with different heat-rate characteristics (for example a 800 MW unit with a mid-
merit heat-rate may be split into 1x400MW unit with a baseload heat-rate, 1x 
300 MW unit with a mid-merit heat-rate, and 1x 100MW unit with a peaker 
heat-rate). 

The key options were as follows: 

1. Matching GB prices exactly – The representation which was used for the initial 
backcast calibration and analysis was one in which GB prices are forced to exactly 
equal the historical prices seen in the GB market. The GB demand and generation 
capacity is set so that there is sufficient capacity for full transfer across both EWIC 
and Moyle either into GB from the SEM, or into the SEM from GB. 

2. Heat-rate regression against GB gas prices – This is the representation which was 
used in the previous validated model. To form this representation annual historical 
GB prices were segmented into winter and summer; and further segmented 
according to trading period for both key seasons. A regression analysis was 
performed between these prices and the associated daily GB DA gas prices to 
determine a representative set of heat-rates. In each of these two seasons the full 
generation capability of GB was represented by a heat-rate. These prices were 
further raised by incorporating GB emissions costs into the fuel cost, and by 
introducing wheeling charges to the interconnectors. 

3. Heat-rate regression against GB gas prices with vertical segmentation – This 
method builds on method 2 described above. However instead of representing GB 
as a single unit the supply in GB is split into 4 different units. Each has the same 
heat-rate characteristics, but different maximum capacity, minimum stable levels 
and minimum up-time introducing a unit commitment component to the GB model. 

4. Heat-rate regression against GB gas prices with fixed component - This method is 
similar to the regression methodologies described above, however instead of being 
a fully variable heat-rate, the regression was performed assuming there was a non-
zero constant element. This non-zero element in the GB price analysis was typically 
a fairly good fit to the lower priced baseload elements in the system which would 
not directly have emissions included in their calculation (e.g., wind and nuclear). 

5. Heat-rate regression against GB gas prices with horizontal segmentation – This 
methodology built on the regressed GB heat-rates (in this case the heat-rates with 
an added constant component, as they were a better fit for market outcomes). 
However, portions of the supply curve were identified to be separated out and 
priced as baseload generation, or as peakers. Baseload generation pricing was based 
on the constant element identified in the heat-rate regression. Meanwhile the peaker 
representation was priced seasonally in accordance with the peak prices observed 
in the market. 
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6. Heat-rate regression (with fixed component) against GB gas prices with 
horizontal segmentation and intermittent Generation – Adding intermittent 
generation introduced a wind generation component to the supply curve in GB. This 
was tested over options 2-5, but the strongest outcomes were seen with option 5. 
Across all of the options it particularly improved the representation of 
interconnector flows across the summer months. As this is the chosen model it will 
be described in further detail below. 

Option 6: Heat-rate regression (with fixed component) against GB gas prices 

with horizontal segmentation and intermittent generation 

This is the recommended methodology as it produced the strongest fit to actual market 
results, as well as representing a good estimate of systems behaviours.  

Analysis of different explanatory variables identified that the most significant contributor 
to GB price formation was the GB gas price. Using a series of regressions (across each hour, 
across price data split into summer and winter seasons) a variable heat-rate component and 
a constant component were identified. These contributed to price formation, alongside 
emissions costs. 

Using price and flow cluster analysis it was identified that while the resulting equations 
were a good representation of GB prices on average, they did not capture some of the 
variation which was seen in practice in the system. Particularly that, at times, higher or 
lower priced generation was likely to dominate price and flow outcomes.  

This indicated that a better result would be observed where the available capacity in GB 
was represented by several generating units, each with a different price. For simplicity the 
approach used included: 

 a single unit at a baseload price (with a bid price equal to the fixed component 
of the regression outcome); 

 a single unit which acted as a mid-merit plant with heat-rates according to the 
regression outcomes; 

 a single peaking unit (with a price based on observed seasonal peak market 
prices); and 

 a single intermittent wind generator (with capacity factors based on ROI, as 
the highest impact on SEM solutions occurred when capacity factors were 
correlated between the two islands). 

The capacity of each of these generating plants was determined per season based on cluster 
analysis of flows. However, when this analysis was performed across the winter months it 
produced outcomes where the baseload unit, intermittent generation and peaking unit each 
had a zero, or very small capacity associated with them. For this reason, the GB model for 
winter is substantively the same as that which would be produced by Option 4. 

This methodology produced strong results particularly across the summer months. 
Outcomes were driven by the good representation of GB prices, available quantities, and a 
good representation of the residual supply curve.  However there continues to be no direct 
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representation in the methodology of the unit-commitment trade-offs between units in GB 
and those in the SEM. 

The GB model produces a substantively similar shape of SEM pricing outcomes as using 
historical actual GB prices. However, there is a small reduction in price quality from -5.8% 
lower than actual to -6.1% lower than actual. 

Figure 24  Monthly average prices (comparing new GB model to actual historical and GB 
model with historical GB prices) 

 

Interconnector flow representation of the revised GB model is superior to results using 
historical actual GB prices. 
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Figure 25  Interconnector flow duration curve (comparing new GB model to actual historical 
and GB model with historical GB prices)  

 

The closeness of fit between the model and generator dispatch outcomes is also enhanced 
by the new GB model. 

Figure 26  Annual total generator dispatch outcomes by plant type (comparing new GB 
model to actual historical and model with historical GB prices) 
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Wheeling charges 

Wheeling charges are a model element which was introduced to the SEM PLEXOS model 
in order to replicate the market interconnector flow outcomes more accurately. These are 
costs applied to the flow across the interconnector and are used to adjust the price 
differences required between the two markets before flow becomes economic in a given 
direction. 

The wheeling charges which were included in the previous models were included so as to 
calibrate interconnector flow outcomes to more closely resembled market outcomes. These 
were not designed to replicate the fundamental economic drivers underpinning 
interconnector flows. They also require re-calibration to be used appropriately under MIP 
as opposed to RR.  

The inclusion of wheeling charges over the backcast time period worsens pricing outcomes 
across the year. It does, however, improve interconnector flow outcomes across the summer 
months.  

It is recommended that these wheeling charges be removed. This is partially due to the new 
GB modelling methodology which improves the modelled interconnector flows. Also 
removing these constructed elements ensures that the model development will continue to 
evolve based on market fundamentals. Regular inclusion of constructed elements could 
cause over-fit to historical behaviours rather than a model which can consistently predict 
future expected market outcomes. 

8.4 MIP vs RR 

Using a MIP-based approach across the backcast period produced mixed results. There was 
an improvement in summer price and interconnector outcomes, while the representation 
of winter market outcomes worsened. The benefits and drawbacks of each approach are 
discussed in section 6.5 above. 

In order to isolate the impact of different proposed methodologies from other system-
calibration elements analysis was undertaken across the backcast time period in three 
stages. 

1. Identifying the impact of MIP on SEM alone: For this analysis the energy 
generation and prices were fixed to exactly match historical levels so that there was 
no potential for additional transfer to/from GB above historical levels. 

2. Identifying the impact of MIP on SEM including interconnector flows: For this 
analysis GB offer prices only were forced to exactly match historical prices, while 
flows themselves were permitted to vary. 

3. Identifying the impact of MIP on specific unit behaviours: This was analysed at a 
high-level across the backcast time period, and in greater detail for two key 
problematic time periods where both the MIP and RR solvers struggled to replicate 
real market outcomes. 
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The outcomes from testing MIP on SEM alone (with fixed interconnector flows and GB 
prices) showed a positive impact on aggregate annual prices, while leaving aggregate 
dispatch and interconnector outcomes largely similar. This is largely due to MIP resulting 
in a smaller price gap between modelled and actual prices across the months of July and 
August. MIP increased the volatility of modelled prices in winter peaks in a manner that 
was not observed in the actual market outcomes.  

However, when testing MIP on the SEM including interconnector flows (with only GB 
prices fixed) there was no significant positive impact on aggregate annual prices. 
Nonetheless, interconnector flows and generation dispatch outcomes were improved in the 
summer months. 

Finally testing MIP on the SEM model using the GB modelling methodology outlined in 
section 8.3.2 above there were observable improvements in the aggregate model solution 
for summer months, and a worsening across the winter months. This was observed across 
pricing, interconnector flow and aggregate generation dispatch outcomes. 

Nonetheless the key cause of price differences in the backcast across the summer months 
was due to events correlated with low wind generation or high wind generation volatility. 
Both MIP and RR were equally unable to replicate this market behaviour.  

When identifying the impact of MIP on specific unit behaviours it was noted that: 

 for baseload plant the two methodologies performed equivalently well in 
replicating market outcomes. 

 for mid-merit plant RR was a better replication of some plant dispatch, while 
MIP provided a better replication of other plant dispatch. 

 for peaker plant, RR generally provided a more realistic profile for regularly 
activated peakers.   

In addition, event analysis was undertaken observing some periods for which the backcast 
was unable to develop a strong fit, as well as some which the backcast was able to replicate 
well. It was discovered that for the time periods where the fit was initially poor that there 
was no significant improvement to the dispatch outcome for the representative units from 
moving from the RR to the MIP method. However, for summer hours where the fit was 
initially fairly good there was a small improvement. Whereas for winter hours where the 
fit was initially fairly good the MIP method worsened some outcomes. 

These mixed results signal that while MIP shows some potential for replicating some 
market conditions, it also has disadvantages. Likewise, a change in modelling methodology 
may not be sufficient to replicate some of the dispatch and unit commitment outcomes 
which occur when the market is under stress (in these cases due to low wind). 

NOTE: Since wheeling charges have been removed from the model, the model no longer 
requires significant recalibration to be appropriate for running using the MIP methodology.  
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9 Conclusions 

9.1 Summary of key model updates 

The following figure provides a summary of the key model updates and the impact they 
had on the SEM annual average price in 2020. It is an indicative model simulation of 2020 
keeping the commodity and exchange rate assumptions constant as per Table 8. It is 
important to note that the impact of these changes will vary year on year. 

Figure 27  Indicative impact on 2020 SEM average annual price from key model updates 

 
 

With reference to the figure above the individual elements are briefly summarised below. 
For further detail on these updates please refer to sections 3 to 8. 

Technical: includes the update of plant technical parameters, retirement and start dates, 
VOM costs and operating costs. 

Wind: the update of annual wind capacity projections as per GCS 2019 as well as the update 
of the base wind profiles used to 2014-2018. 

Demand: the update of annual demand projections as per GCS 2019 as well as the update 
of the base demand profiles used to 2014-2018. 

Start-time 11pm: update of model start-time from 6am to 11pm to reflect actual market 
start-time. 

System: includes updates to outages, TLAFs, DSUs, batteries, embedded generation. 

New GB modelling: updated GB modelling approach. 
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The net effect of all model updates compared to the previously calibrated model is an 
increase of +0.36 €/MWh on the annual average price in this indicative example of a 2020 
simulation. 

9.2 Summary of backcast findings 

A backcast with only one year of market data is inherently limited, and the backcast 
findings were acceptable once the impact of these limitations were taken into account. The 
backcast outcomes were fairly strong across the winter period, but weak across the summer 
period. This was true across pricing, interconnector and generation dispatch outcomes. 

Given there is only a single year of data available across this time period it would be risky 
to recommend substantive changes to the model in response to the differences observed in 
the summer months at this stage. These outcomes may be due to specific annual conditions 
(the key price differences were correlated with particularly low wind). Furthermore, there 
are also likely to be learning behaviours exhibited in the market as participants transition 
from the structured bid requirements of the SEM, to the less restrictive bidding strategies 
in the I-SEM. 

To address these differences performing a further backcast once another 1-2 years of market 
data is available is recommended. 

Annual-specific conditions are difficult to replicate consistently in a forward-looking 
model, since the wind outcomes in the future will be uncertain for all trading periods, and 
so the market signals which incentivise these outcomes would be difficult to replicate. 

Regular and recurring differences between market uplift/mark-ups and modelled prices 
however could be partially addressed either through introducing customised uplift, 
customised mark-ups, or converting from the RR model to a MIP model. 

The high-level backcast outcomes are as detailed on  Table 15 below. 

Table 15  High-level backcast outcomes 

 Historical  RR-PLEXOS 

(New GB model) 

RR-PLEXOS 

(Historical GB prices) 

MIP-PLEXOS 

(New GB model) 

Annual average price €56.60 €53.20 €53.40 €54.40 

Annual interconnector 
flows (Into GB) 

1600 GWh 2353 GWh 2786 GWh 1963 GWh 

Annual interconnector 
flows (From GB) 

2572 GWh 1503 GWh 1283 GWh 1987 GWh 

 

The RR model price outcomes are just outside of the range expected to be seen on a 3-5 year 
backcast. Following analysis of key causes, these are within the expected tolerance for a 
backcast across a single year. However, further backcasts need to be undertaken to ensure 
these differences are due to annual characteristics rather than a persistent trend. As 
expected, lower price outcomes in the SEM result in interconnector outcomes with higher 
transfer from Ireland into GB than in market results. Interestingly these results are 
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consistent both using the GB modelling methodology and where GB prices are set at 
historical actual prices. This implies that the key issues which prevent a strong replication 
are market behaviours within the SEM.  

The key differences are driven by highly priced time periods where there was low or 
volatile wind generation in the market. If these time periods are omitted from the market 
data, the annual average historical market price would be €54.06 – which is within an 
acceptable +/-5% bound for all of the backcast outcomes specified on the table above. This 
reinforces the recommendation to explore the market drivers behind these events in greater 
detail. 

The MIP backcast outcomes aggregate annual price outcomes were higher – these were 
within a ±5% variation from the historical pricing outcomes. This reflects stronger market 
outcome replication in the summer, but worse market outcome replication in the winter. 
Also, at a monthly level MIP (like RR) continues to struggle to replicate the low wind, high 
price events across the summer.  

9.3 Recommended changes and further actions 

The key changes that are recommended to the market model based on this model 
validation and backcast exercise are as follows: 

 Move to a market start-time of 11pm 

 Update the PLEXOS version to 8.1 

 Introduce GB modelling based on a gas price-based regression combined with 
horizontal segmentation and the addition of intermittent generation 
(particularly for summer) 

 Remove wheeling charges 

The key elements which were explored and it is recommended to retain the current settings 
are as follows: 

 6-hour look-ahead 

 Korean uplift algorithm (retain and monitor) 

 Current mark-up methodology 

 RR modelling methodology  
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9.4 Confidential data and models supplied 

This report is supplied to the RAs with two versions of the validated PLEXOS model 2019-
2025: 

 A version for the RA’s including confidential data provided by market 
participants such as VOM costs and start costs 

 A public model version with confidential data removed.  

We are not able to publish all of the data gathered and used. We would therefore suggest 
that for start costs and VOM costs users make their own assumptions. 
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ANNEXES 

 

A1 Backcast outcomes 

A1.1  Monthly backcast price results 

Table 16  Monthly average backcast price results 

 Historical  RR-PLEXOS  

(New GB model) 

RR-PLEXOS 

(Historical GB prices) 

October 2018 €73.70 €70.38 €71.84 

November 2018 €67.20 €67.30 €67.85 

December 2018 €76.12 €70.53 €70.69 

January 2019 €78.09 €72.79 €72.87 

February 2019 €54.53 €53.83 €53.52 

March 2019 €49.21 €51.49 €50.18 

April 2019 €49.34 €48.97 €49.68 

May 2019 €48.53 €43.34 €44.19 

June 2019 €42.90 €38.40 €38.67 

July 2019 €51.25 €42.38 €43.16 

August 2019 €44.73 €39.04 €38.53 

September 2019 €44.10 €39.81 €39.34 

    

Average €56.64 €53.19 €53.38 
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A1.2 Monthly backcast interconnector flow results 

Table 17  Monthly backcast interconnector flow (to GB) results 

 Historical  RR-PLEXOS  

(New GB model) 

RR-PLEXOS 

(Historical GB prices) 

October 2018 121 GWh 95 GWh 190 GWh 

November 2018 181 GWh 163 GWh 238 GWh 

December 2018 109 GWh 128 GWh 172 GWh 

January 2019 89 GWh 117 GWh 146 GWh 

February 2019 162 GWh 276 GWh 271 GWh 

March 2019 156 GWh 236 GWh 189 GWh 

April 2019 154 GWh 117 GWh 198 GWh 

May 2019 126 GWh 225 GWh 274 GWh 

June 2019 183 GWh 281 GWh 318 GWh 

July 2019 89 GWh 248 GWh 298 GWh 

August 2019 107 GWh 263 GWh 281 GWh 

September 2019 123 GWh 205 GWh 212 GWh 

    

Total 1600 GWh 2353 GWh 2786 GWh 
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Table 18  Monthly backcast interconnector flow (from GB) results 

 Historical  RR-PLEXOS  

(New GB model) 

RR-PLEXOS 

(Historical GB prices) 

October 2018 244 GWh 233 GWh 99 GWh 

November 2018 132 GWh 160 GWh 86 GWh 

December 2018 284 GWh 224 GWh 173 GWh 

January 2019 333 GWh 280 GWh 243 GWh 

February 2019 140 GWh 73 GWh 76 GWh 

March 2019 209 GWh 101 GWh 150 GWh 

April 2019 181 GWh 182 GWh 113 GWh 

May 2019 162 GWh 38 GWh 46 GWh 

June 2019 97 GWh 13 GWh 25 GWh 

July 2019 303 GWh 56 GWh 54 GWh 

August 2019 246 GWh 39 GWh 83 GWh 

September 2019 241 GWh 104 GWh 135 GWh 

    

Total 2572 GWh 1503 GWh 1283 GWh 
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A2 Full recommendation summary 

The full recommendation summary summarises the minor recommendations made 
throughout the report, and the major recommended model changes resulting from the 
validation exercises. For many of these minor recommendations there are additional 
activities which must be undertaken and/or additional data required before the 
recommendation can be actioned. These are described in the “Pre-condition” column. The 
“Priority” column provides an indication of the expected value of each activity to the 
improvement of modelled outcome.   

Table 19  Full recommendation summary (including minor recommendations) 

Area Recommendation Pre-conditions Priority 

Model start-time Change start-time from 6am to 
11pm 

None High 

Model version Update PLEXOS model version 
from 7.3 to 8.1 

None High 

GB Modelling Adopt new GB modelling approach None High 

Wheeling 
Charges 

Remove wheeling charges None High 

Batteries Review whether smaller batteries 
are likely to be dispatched in hourly 

DAM. 

Improved data on proposed battery 
functions and contracts. 

Low 

Batteries/Storage Review whether batteries and 
storage are primarily used for  

energy support or other services. 

Improved data on proposed batter 
functions and contracts. 

Medium 

Supply/Demand 
Model inputs 

Review whether model inputs 
can/should be changed to reflect 

DAM offered values. 

2-4 additional years of market data. 

Development and maintenance of 
information sources relating gross 

demand, wind and embedded 
generation to offer/bid levels in the 

DAM. 

Medium 

Wind Modelling Review the inclusion of separate 
offshore wind generation profiles. 

Additional offshore wind generation 
build. 

Development of offshore wind profile 
data. 

Low 

DSU Pricing Regularly review DSU pricing. 
Consider revising the spread of 
minimum income condition bids 
across multiple trading periods.  

Additional DSU bid data. Medium 

Interconnector 
representation 

Review whether improvements can 
be made on interconnector capacity 

calculations 

1-2 years additional market data. 

System data relating to daily available 
capacity on interconnectors. 

High 

Uplift algorithm Review whether Korean, SEM or a 
custom algorithm may best 
represent market results. 

2-4 years additional market data. Medium. 

Scarcity pricing Review whether scarcity pricing 
can/should be represented in the 

market model. 

1-2 years additional market data. 

Offer data relating to days with 
observed elevated prices. 

High 

MIP  Review the impact of different 
simplification options on MIP 
solution quality and run-time. 

None Medium 
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Area Recommendation Pre-conditions Priority 

Assetless traders Review whether assetless traders 
need to be explicitly incorporated 

into model. 

2 years additional market data. Low 

Mark-ups Review the inclusion of mark-ups in 
the model. Including considering: 

▪  whether summer mark-up 
and uplift pricing is 
appropriate 

▪ whether existing mark-ups 
should be retained, and 

▪ whether a transparent mark-
up creation methodology 
could be implemented. 

2 years additional market data. High 

 


