

SEM PLEXOS model validation 2010-2011

Presentation to SEM participants

Disclaimer

While Redpoint Energy Limited considers that the information and opinions given in this work are sound, all parties must rely upon their own skill and judgment when interpreting or making use of it. In particular any forecasts, analysis or advice that Redpoint Energy provides may, by necessity, be based on assumptions with respect to future market events and conditions. While Redpoint Energy Limited believes such assumptions to be reasonable for purposes of preparing its analysis, actual future outcomes may differ, perhaps materially, from those predicted or forecasted. Redpoint Energy Limited cannot, and does not, accept liability for losses suffered, whether direct or consequential, arising out of any reliance on its analysis.

Agenda

- Introduction
- Calibration of backcast model
- Validation of forecast model
- Recommendations
- Next steps

Introduction

Objectives

- Calibration of PLEXOS against actual half hourly ex post data on unit schedules, shadow prices, uplift and system marginal prices
- Validation of the PLEXOS model input data, for Q4 2010 and calendar 2011
- Recommendations on PLEXOS model settings for simulating ex post unconstrained schedules
- Redpoint's SEM and PLEXOS background
 - 2007 model validation exercise in conjunction with KEMA
 - 2009 priority dispatch and curtailment study in conjunction with Skyplex

Key messages

- Overall good fit
 - Prices
 - MSQs
 - Over-commitment no longer an issue
- Very good response from the market participants thank you!
- PLEXOS 5 upgrade
- Recommend a new Moyle approach

Summary of Process

Calibration

- Develop backcast model
- Data cleansing and formatting
- Liaison with Energy Exemplar

Validation

- Generator and SEMO data
- Comparison to previous validated data set, similar SEM plant, internal benchmarks, Commercial & Technical Offer data

Recommendations

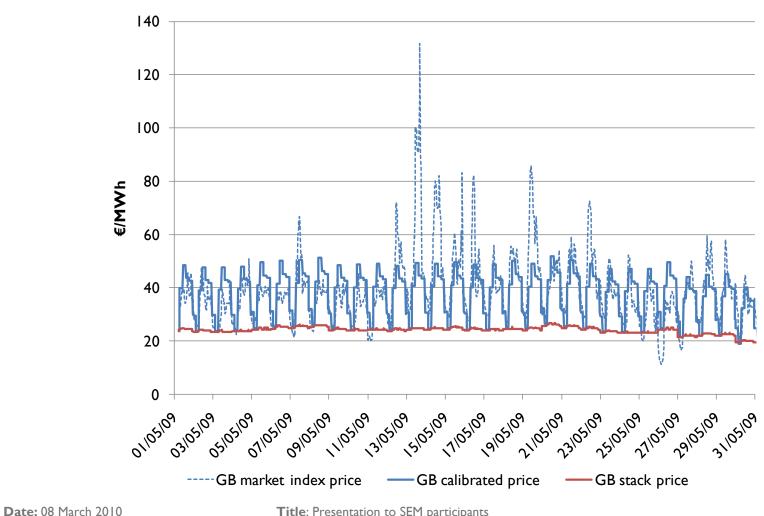
- RR and MIP
- Moyle
- Price takers

Calibration of backcast model

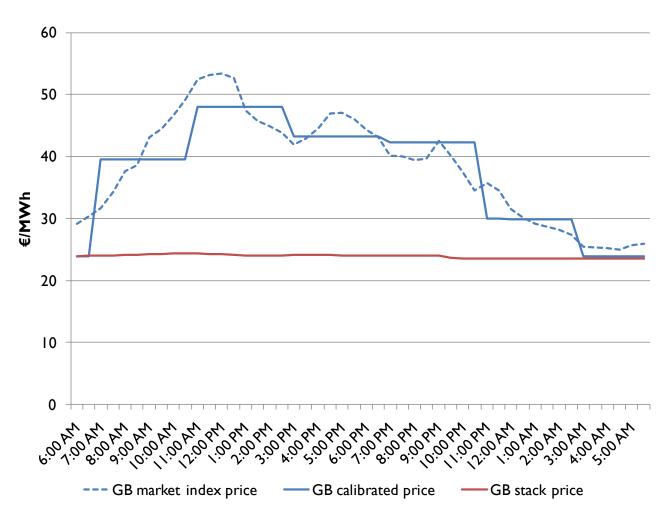
Key changes

- Move from PLEXOS 4 to PLEXOS 5.104
 - PLEXOS 4 support is not continuing indefinitely
 - Energy Exemplar development focus is on PLEXOS 5
- What's changed in P5?
 - Improvements to Rounded Relaxation algorithm
 - Reduction in Uplift
 - Reduction in plant at MSL
 - Mixed Integer Programming now faster (~3-4 hours for a 2 year backcast model)
- Contact with Energy Exemplar throughout process has led to SEM-specific changes
 - Irish SEM start state definition
 - Flexibility on multi-band commercial offers
 - Application of mark ups to multiple load points (only relevant in forecast model)
- GB market price calibration exercise
- Wheeling charges to reflect risks/costs of trading across Moyle
- Peat modelled as price taker, with actual availability used as rating

- Aim
 - Get Moyle flows and impact on SMP correct under multiple fuel price scenarios
- Reality of Moyle usage
 - Gate closure
 - Capacity holders


Challenges

- Price setting in GB not formulaic
- GB generation dataset not publicly available
- Approach needs to be able to support multiple fuel price scenarios in the forecast model
- Fixing Moyle flows is not the solution
 - Poorer SMP fit


- Limitations of previous approach
 - Maintenance of GB stack
 - Lacked GB price mark-up above SRMC
 - Derating of intermittent generators
- Thinking behind the calibration
 - Backcast model dispatched against 4 hour average GB index price produced reasonable price and interconnection flows
 - GB is a gas dominated market, historic correlation between gas and power price

GB calibration – Shape May 2009

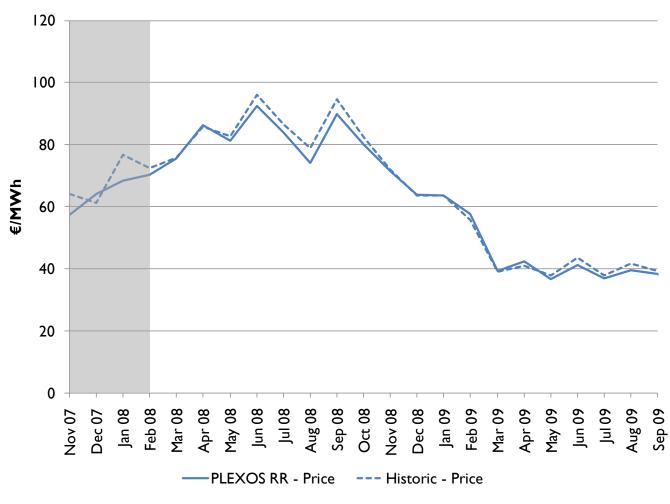
Process

- Theoretical GB generator parameters are defined over 4 hour EFA blocks for both summer and winter
- Use the theoretical GB parameters and a daily gas and carbon price to create a calculated
 GB price series
- Using MS Excel Solver, optimise the difference between the calculated GB price series and the 4 hour average GB index price
- Attach these parameters to the single theoretical GB generator in the model
- Potential areas for further investigation
 - Appropriate block size to use for the optimisation of the GB parameters
 - Most appropriate optimisation horizon

Wheeling charges

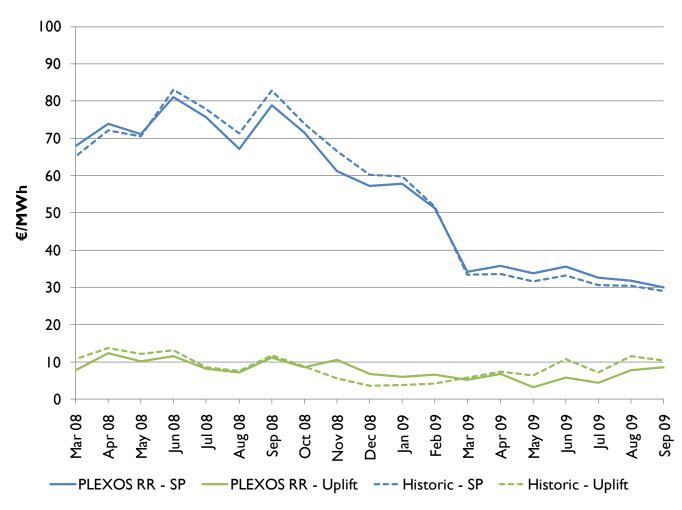
 Revise numbers to reflect the pricing difference between GB and SEM not captured in the PLEXOS optimisation

- Factors
 - SEM Capacity payments
 - TNUoS
 - Risk premium
- Assumed values
 - Wheeling charge from SEM to GB: 13.2 €/MWh
 - Wheeling charge from GB to SEM: -0.4 €/MWh

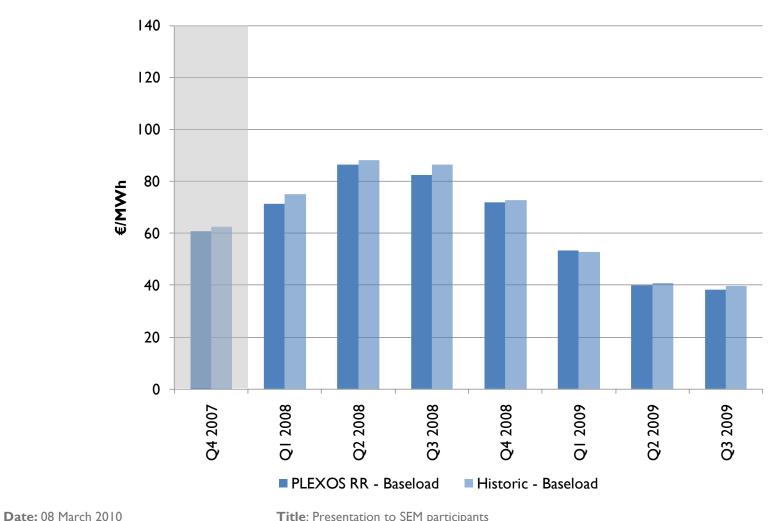

Backcast results

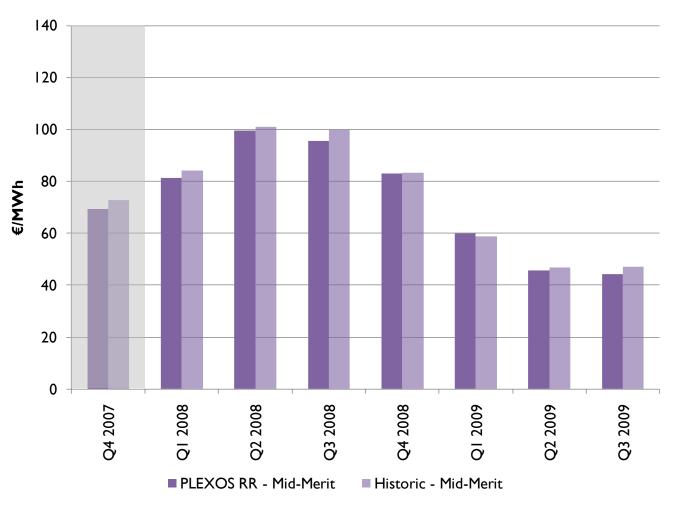
- Monthly SMP, SP & Uplift
- DC pricing blocks
- Shape of SMP, SP, Uplift
- MSQs
- Special cases
 - Interconnection flows
 - Hydro
 - Pumped Storage

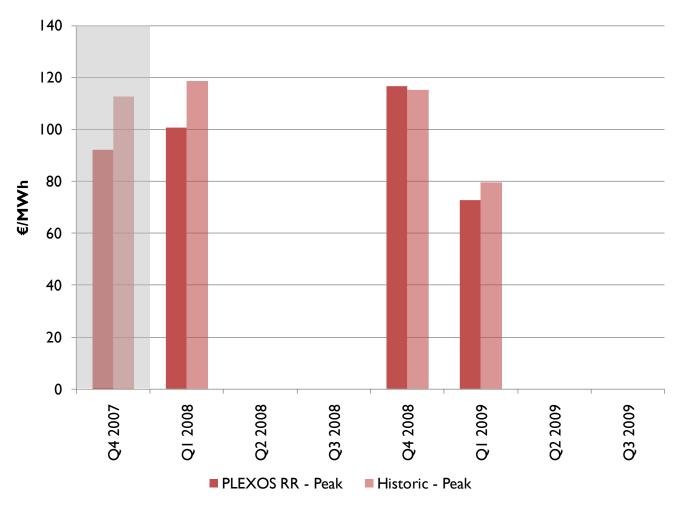
Backcast results – Monthly SMP

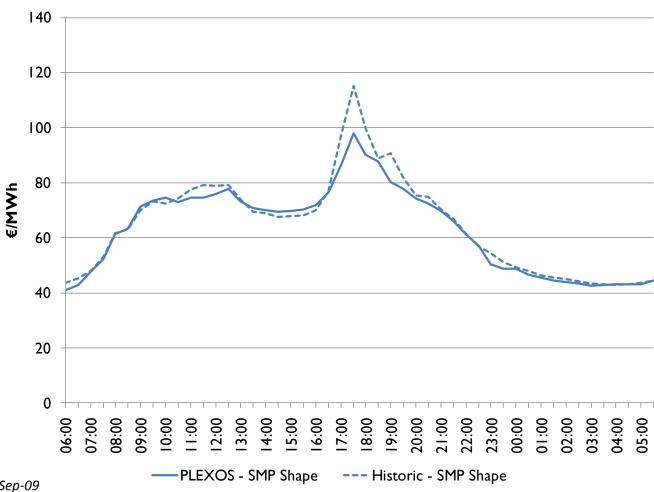


Date: 08 March 2010

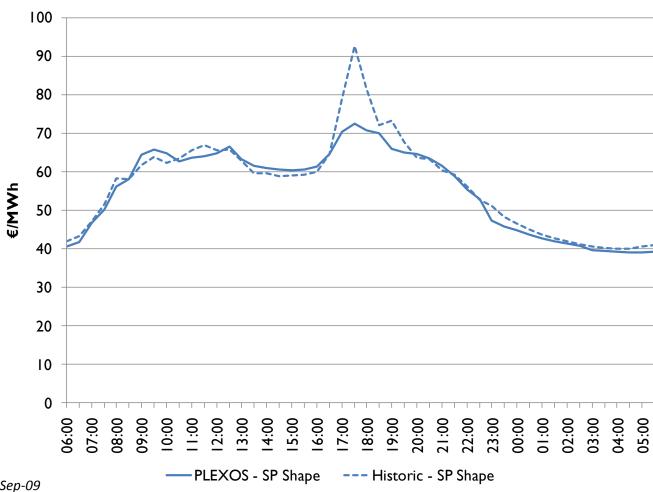

Backcast results - Monthly SP & Uplift


Backcast results - DC price: Baseload


Backcast results – DC price: Mid-Merit


Backcast results – DC price: Peak

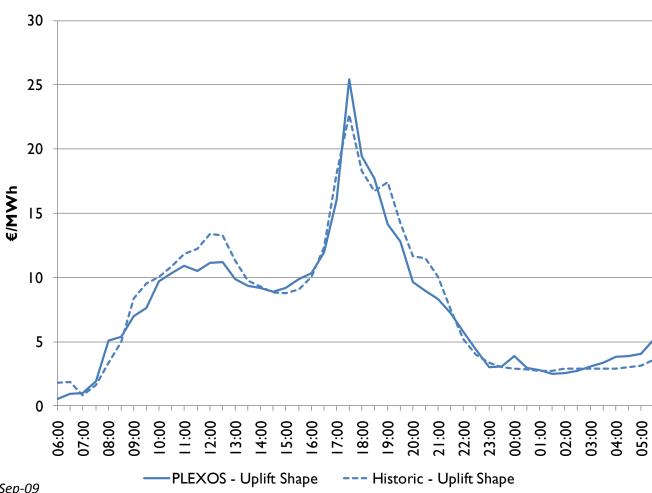
Backcast results – SMP shape



Covers Nov-07 to Sep-09

Date: 08 March 2010

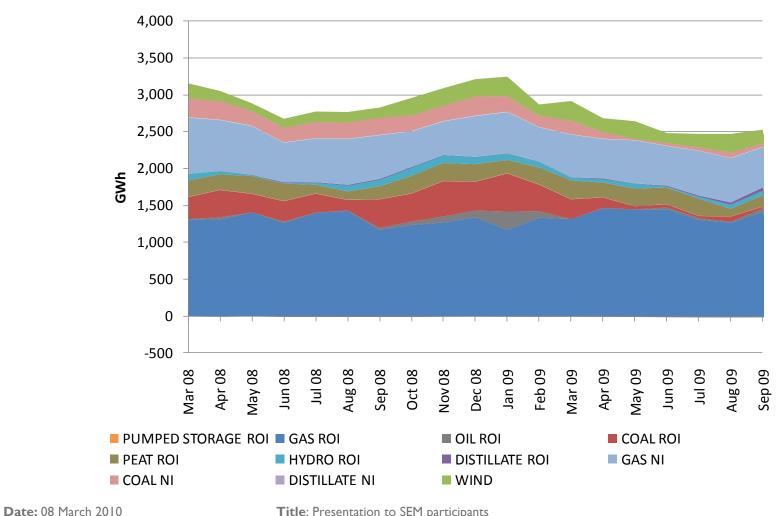
Backcast results – SP shape



Covers Nov-07 to Sep-09

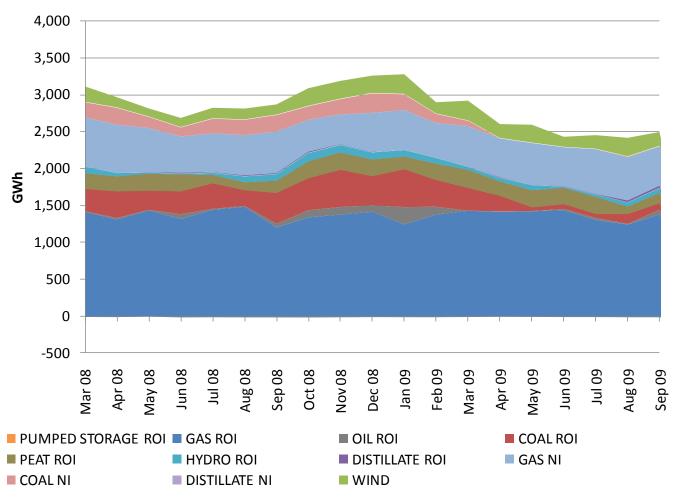
Date: 08 March 2010

Backcast results – Uplift shape



Covers Nov-07 to Sep-09

Date: 08 March 2010


Backcast results – PLEXOS MSQ

Backcast results – Historic MSQ

Backcast results – PLEXOS vs Historic MSQ

26

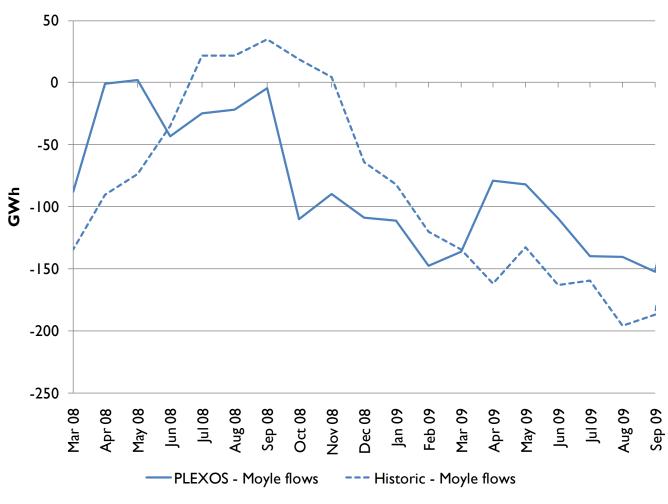
Unit	Cap. Fac. Delta	Av MW Delta		
PBC	-15%	-72.2		
K2 Coal 220	12%	28.5		
B31	11%	27.5		
B32	10%	26.8		
K I Coal 220	11%	25.3		
ADI	-5%	-12.0		
HNC	-2%	-10.1		
MP3	-3%	-9.6		
CPS CCGT	3%	9.4		
MP2	-2%	-9.2		
BIO	9%	9.2		
MPI	-3%	-8.2		
NW4	3%	6.2		
HN2	-1%	-5.8		
PBI	-5%	-5.2		
DBI	1%	4.9		
EDI	0%	4.9		
MRC	4%	4.9		

Unit	Cap. Fac. Delta	Av MW Delta		
continued				
PB2	-3%	-3.0		
WO4	2%	3.0		
B4	1%	2.7		
TB4	-1%	-2.4		
SK3	1%	1.0		
ATI	-1%	-0.9		
B5	1%	0.9		
LR4	1%	0.9		
SK4	1%	0.9		
B6	0%	0.8		
GI3	-1%	-0.8		
TY	1%	0.8		
AT4	-1%	-0.7		
NW5	0%	-0.5		
ТВ3	0%	-0.3		
AT2	0%	0.3		
RH2	0%	-0. I		

Unit	Cap. Fac. Delta	Av MW Delta		
continued				
ТВІ	0%	-0.1		
RHI	0%	-0. I		
TPI	0%	-0. I		
GII	0%	-0. I		
AP5	0%	-0.1		
KGT4	0%	-0.1		
KGT3	0%	0.0		
TB2	0%	0.0		
GI2	0%	0.0		
CGT8	0%	0.0		
TP3	0%	0.0		
BGT2	0%	0.0		
BGTI	0%	0.0		
KGTI	0%	0.0		
KGT2	0%	0.0		
Wind SEM	0%	0.0		
PB3	0%	0.0		

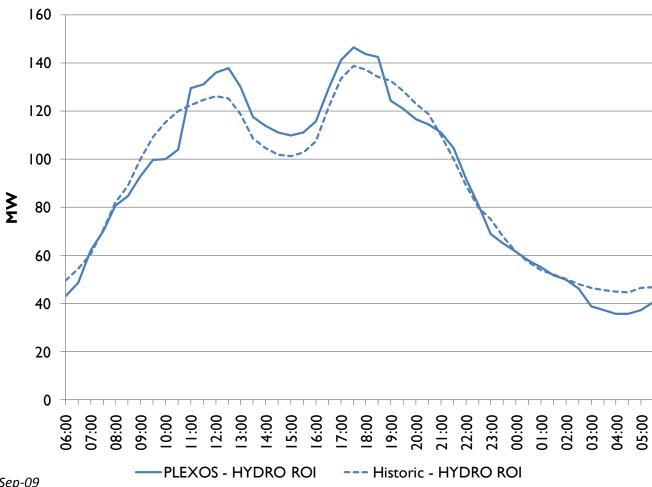
Date: 08 March 2010 Title: Presentation to SEM participants

Backcast results – PLEXOS vs Historic Commitment

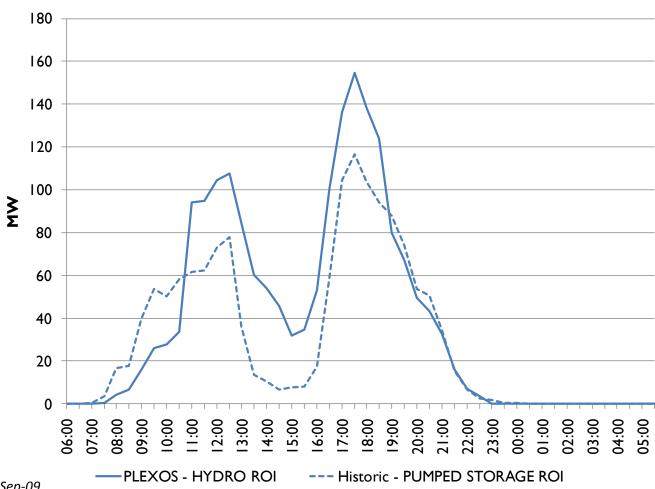


Unit	% Hist periods at MSL	% PLEXOS periods at MSL	Delta	Unit	% Hist periods at MSL	% PLEXOS periods at MSL	Delta	Unit	% Hist periods at MSL	% PLEXOS periods at MSL	Delta
ADI	11%	5%	-5%	continued				continued			
BI0	14%	10%	-4%	GI3	0%	0%	0%	GI2	0%	0%	0%
PBC	15%	11%	-4%	SK3	1%	1%	0%	RHI	0%	0%	0%
CPS CCGT	5%	2%	-3%	SK4	1%	1%	0%	TB2	0%	0%	0%
PBI	4%	2%	-2%	В6	1%	1%	0%	RH2	0%	0%	0%
MRC	3%	1%	-2%	DBI	1%	1%	0%	AT4	0%	0%	0%
MP2	10%	9%	-1%	ТВІ	0%	0%	0%	BGTI	0%	0%	0%
K2 Coal 220	3%	2%	-1%	HNC	1%	1%	0%	BGT2	0%	0%	0%
PB2	3%	1%	-1%	GII	0%	0%	0%	AP5	0%	0%	0%
MP3	12%	11%	-1%	AT2	0%	0%	0%	PB3	0%	0%	0%
B4	2%	3%	1%	ТВ3	3%	3%	0%	EDI	1%	1%	0%
TY	1%	3%	1%	KGTI	0%	0%	0%	ATI	0%	0%	0%
NW4	1%	0%	-1%	KGT2	0%	0%	0%	NW5	0%	0%	0%
B5	0%	1%	1%	B31	6%	6%	0%	TP3	0%	0%	0%
K1 Coal 220	2%	1%	-1%	TPI	0%	0%	0%	CGT8	0%	0%	0%
MPI	8%	8%	1%	HN2	1%	1%	0%	KGT3	0%	0%	0%
WO4	3%	3%	0%	ТВ4	2%	2%	0%	KGT4	0%	0%	0%
B32	6%	6%	0%	LR4	1%	0%	0%	Wind SEM	0%	0%	0%

Date: 08 March 2010 **Title**: Presentation to SEM participants


Backcast results – Interconnection

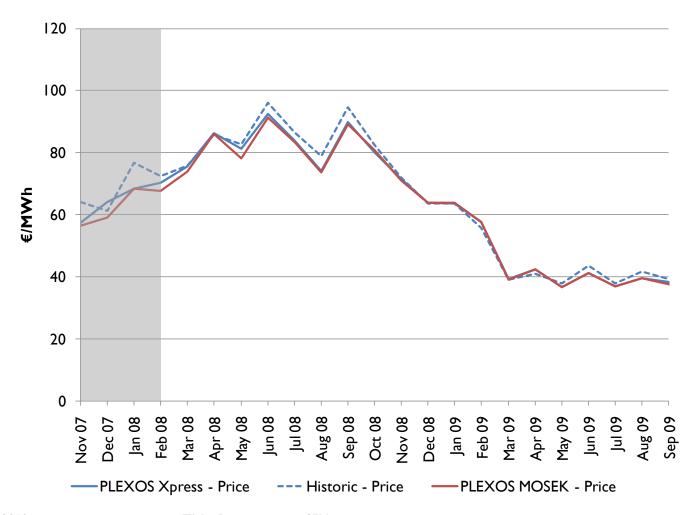
Backcast results – Hydro shape



Covers Nov-07 to Sep-09

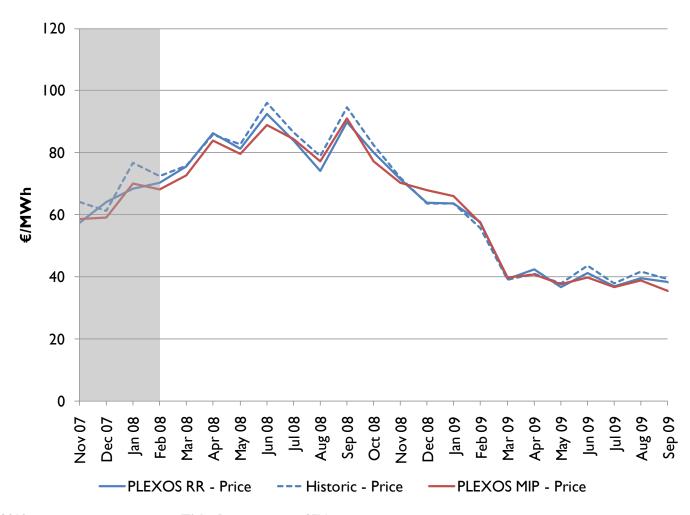
Date: 08 March 2010

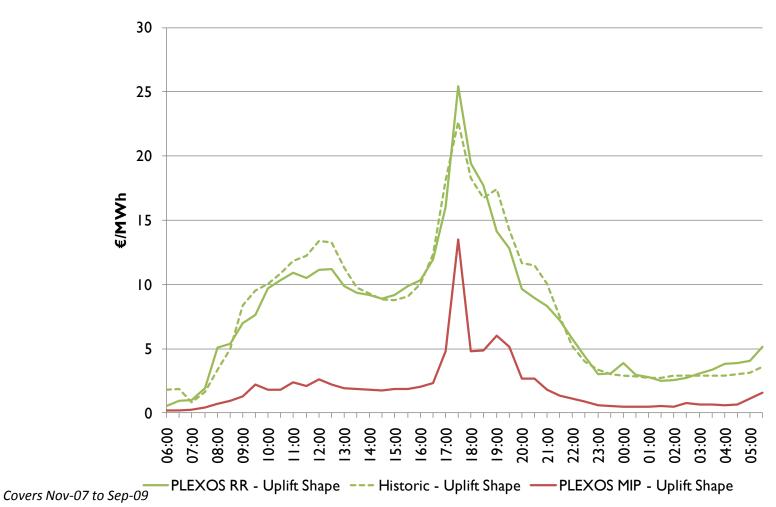
Backcast results - Pumped storage shape



Covers Nov-07 to Sep-09

Date: 08 March 2010


Backcast sensitivities / setting testing MOSEK RR vs Xpress RR: Average SMP


Backcast sensitivities / setting testing MIP vs RR: Average SMP

Backcast sensitivities / setting testing MIP vs RR: Uplift shape

Date: 08 March 2010

Backcast sensitivities / setting testing

- Tested RR rounding setting
 - Lower RR settings cause a lower price, increasing the delta between PLEXOS and historic
 - Higher RR settings increase the number of price cap events due to lack of unit commitment
 - Recommend RR = 5

Start cost states

- In rounded relaxation mode, PLEXOS uses a simplified treatment of multiple start states
- Recommend continued use of single start state

Validation of forecast model and data

PLEXOS forecast model

- Forecast model builds up generator offers from
 - Heat rate curve (no load and incremental heat rates)
 - Variable O&M costs in €/MWh, as appropriate
 - Delivered fuel prices, based on index price + cost of carbon plus transport & excise adders
 - TLAFs
- Start costs calculated from fuel offtake at start and a fixed €/start cost
- Backcast model uses Actual Availability, whereas forecast uses forced outage rates (%) and assumed maintenance schedules
- Special cases follow approach taken for backcast
 - Pumped Storage: optimised by PLEXOS
 - Hydro: run using daily limits
 - Moyle: GB representative price approach implemented
 - Wind: half hourly profiles

Data and assumptions required

- Validated forecast model required to run to end 2011
- Generator data
 - Heat rates
 - Technical parameters
 - Forced outage rates
 - Start and VOM costs
 - New entrants and retirements
- Half hourly demand assumptions
- Embedded generation
- Wind capacity and profiles
- Transmission Loss Adjustment Factors
- Daily hydro availability limits
- Outage schedules

Generator data

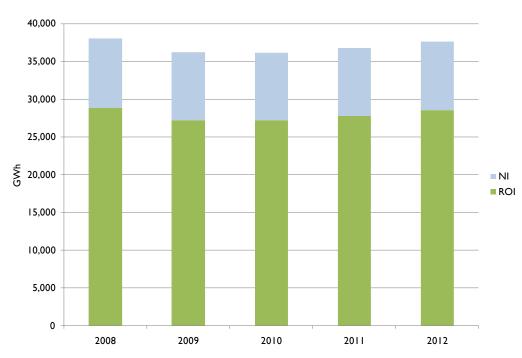
- Supplied previous validated data to generators and asked for updates where required
- We validated the submitted data by
 - Comparing to last year's validated dataset and understanding the reasons for changes
 - Comparing between groups of similar SEM units
 - Using submitted heat rates, no load heat rates & start costs/start fuel offtake in conjunction with historic fuel & carbon price, create daily offer prices etc and compare to actual market submissions (Commercial Offer Data)
 - Comparing to Redpoint internal benchmarks

Generator data

- In general changes to submitted data from previous data arose from
 - Reassessment of unit characteristics
 - Changes in operation of units
 - Changes in interpretation of bidding principles, leading to changes in market submissions
 - e.g. Elements included in start costs
 - Clarifications on the form of the data required
- Where major changes to the data arose, we discussed these with the generator involved to understand the justification and considered these to be justified after discussion with the generator involved
- A number of generators caveated their responses e.g. if the generator is not in service yet or if a review of operating parameters is currently underway
 - In these cases we accepted the generator's current best view

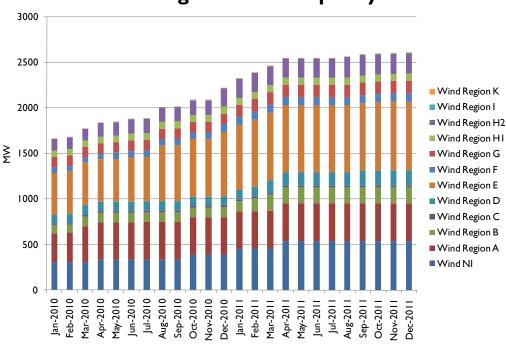
Generator data

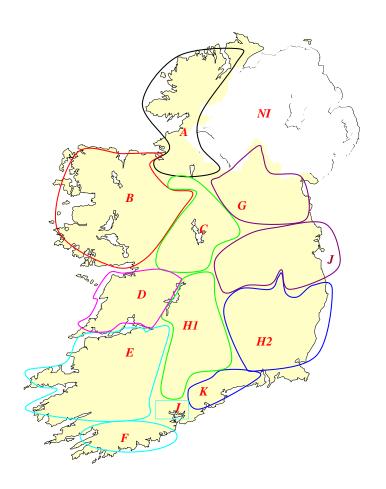
- New entrants and retirements
 - Updates to commissioning dates for Aghada and Whitegate CCGTs
 - Confirmed Poolbeg 1&2 retirement dates
- Discussion with SEMO and participants identified 5 new units that are expected to be commissioned by end 2011
- Generator data for these units is based on expected unit characteristics


Unit name	Fuel	Assumed Commissioning date	Capacity (MW)
Contour Global Unit I	Gas	Dec-09	3
Contour Global Unit 2	Gas	Dec-09	3
Cushaling Unit 1	Distillate	Oct-10	56
Cushaling Unit 2	Distillate	Oct-10	56
Meath Waste-to-Energy	Waste	Sep-11	17

Demand assumptions

- Annual and peak electricity demand based on
 - Eirgrid's median demand forecast from Generation Adequacy Report 2010-2016
 - SONI's median demand forecast as published in Generation Capacity Statement 2010-2016
- Half hourly profile based on 2007 actual profile


Annual electricity demand


Wind capacity assumptions

Regional wind capacity

Monthly capacity changes based on agreed connection dates

Wind priority dispatch

- RAs have been reviewing the principles of priority dispatch and the treatment of nonfirm capacity in the market schedule
 - July 2009 consultation paper (SEM-09-073)
- General approach in SEM PLEXOS modelling to date
 - Wind effectively modelled at zero price
 - Non-firm access rules ignored in market schedule
- Priority dispatch for wind requires a different approach
 - Negative offer price or fixed load

Other assumptions

- SEMO provided us with updated assumptions on
 - Hydro daily availabilities
 - Outage schedules for 2010 and 2011 (including Moyle outages)
 - Typical embedded generation profiles for ROI (excluding wind)
- TLAFs updated based on published TLAFs for 2010 (December 2009) on AIP website
 - 2010 values will be used for 2011, in the absence of updated values
- Fuel prices
 - Recommended fuel price indices unchanged
 - Carbon emission factors unchanged
 - Fuel Adders (Transport costs, Excise) are based on a combination of publically available data and, where appropriate, data supplied by generators

Recommendations

Recommendations

- Treatment of Moyle
 - Use a simplified representation of GB price
 - Use wheeling charges that capture the costs and risks of trading across Moyle
- Use Rounded Relaxation, with the rounding up threshold set to 5
- Use a single (warm) start cost for each unit
- For Predictable Price Taker units (Peat and Waste-to- Energy), remove cost data (heat rates, VOMs and start costs) so output will be determined by availability

Conclusions and next steps

- Thank you for your co-operation and attention
- Report and public versions of the models to be published in the next two weeks
- Questions?

