

Industry Presentation SEM Capacity Payment Mechanism

27 July 2007

John Parsonage

Agenda

- CPM Objectives
- CPM Design
- Annual Capacity Payment Sum
- Payments to Generators
- Charges to Suppliers
- Summary
- Parameters for 2007/2008

Agenda

- CPM Objectives
- CPM Design
- Annual Capacity Payment Sum
- Payments to Generators
- Charges to Suppliers
- Summary
- Parameters for 2007/2008

Objectives of the CPM¹

- Capacity adequacy/reliability of system new and existing plants
- Price Stability take some volatility from energy market, help promote investment
- Simplicity
- Efficient signals for Long Term investments
- Susceptibility to gaming
- Fairness

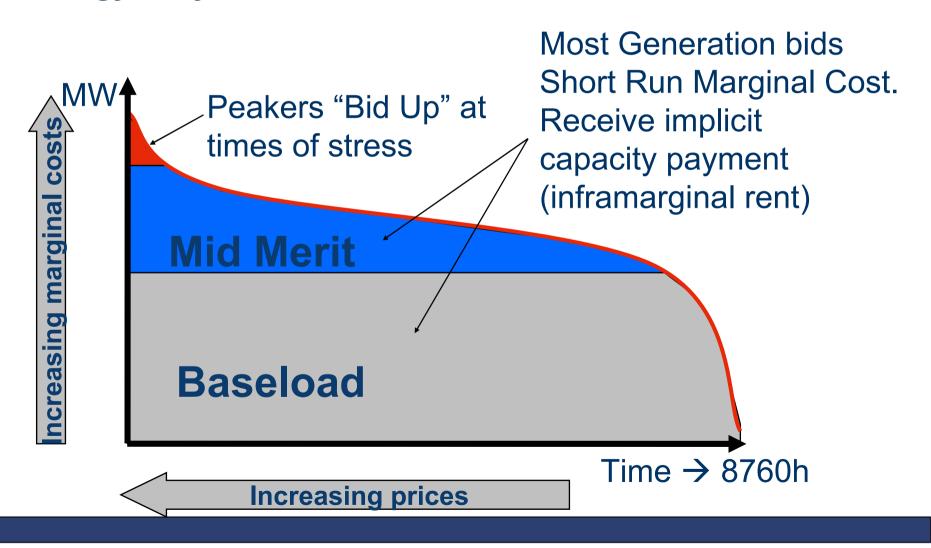
Agenda

- CPM Objectives
- CPM Design
- Annual Capacity Payment Sum
- Payments to Generators
- Charges to Suppliers
- Summary
- Parameters for 2007/2008

CPM Key Features

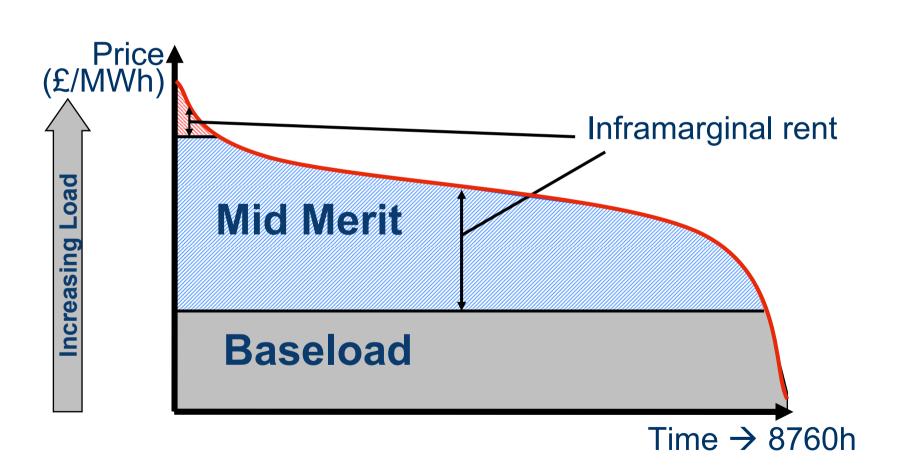
- Fixed amount of cash (the Pot) per year
- Pot determined as Price x Volume
 - Price: Best New Entrant Peaking Plant fixed costs
 - Volume: Capacity required to meet adequacy standard
- Pot allocated for Generator Payments:
 - Fixed (year ahead)
 - Variable (month ahead)
 - Ex-Post (month end)
- Generators paid when available
- Pot allocated for Supplier Charges:
 - Based on demand
- Suppliers charged on consumption

CPM Key Features

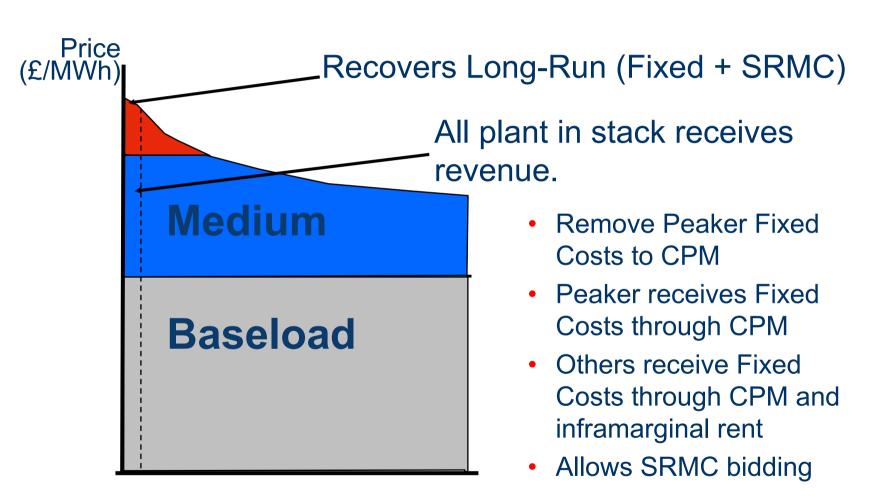


- Fixed amount of cash (the Pot) per year
- Pot determined as Price x Volume
 - Price: Best New Entrant Peaking Plant fixed costs
 - Volume: Capacity required to meet adequacy standard
- Pot allocated for Generator Payments:
 - Fixed (year ahead)
 - Variable (month ahead)
 - Ex-Post (month end)
- Generators paid when available
- Pot allocated for Supplier Charges:
 - Based on demand
- Suppliers charged on consumption

Pot Determination – Price Why Peaker Fixed Costs?

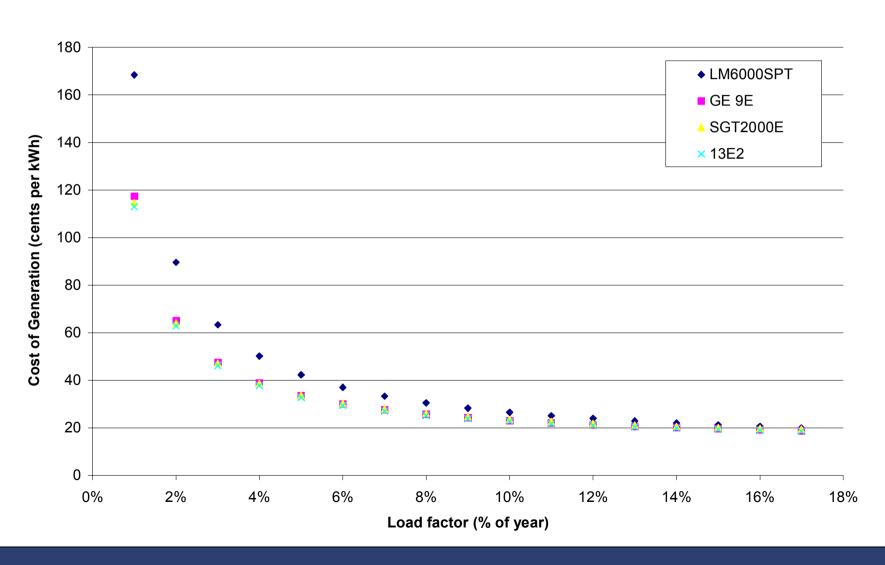

Energy Only Pool:

Pot Determination – Price Why Peaker Fixed Costs?



Energy Only Pool:

Pot Determination – Price Why Peaker Fixed Costs?


- Annualised fixed costs of a Best New Entrant Peaking Plant
- Methodology:
 - Identify appropriate technology for system
 - Estimate:
 - Financial costs (cost of capital over life)
 - Investment costs (site, equipment, etc.)
 - Operational costs (service agreement, Transmission charges, insurance etc.)
 - And deduct infra-marginal rents (if there are any)

Technology	Output (MW)	Efficiency	Accessibility	Start Up	Plant Track Record	Screening Curve
LM6000SPT	44	39.0	J	J	J	
LMS100	92	43.6	J	J	X	
GE 6FA	74	33.9	J	X		
GE9E	124	32.9	J	J	J	
SGT2000E	159	34.0	J	J	J	
Alstom 13E2	187	36.9	j	J	J	

Aero Derivative
Heavy Duty Industrial Gas Turbine

Technology	Output (MW)	Efficiency	Accessibility	Start Up	Plant Track Record	Screening Curve
LM6000SPT	44	39.0	J	J	J	Χ
LMS100	92	43.6	J	J	X	
GE 6FA	74	33.9	J	X		
GE9E	124	32.9	J	J	J	J
SGT2000E	159	34.0	J	J	J	J
Alstom 13E2	187	36.9	j	J	J	J

Aero Derivative

Heavy Duty Industrial Gas Turbine

Integrated Pollution Prevention Control (IPPC) Best Available Technology (BAT) Directive – best efficiency

- Original proposal fired the unit on Gas
- Responses indicated Gas Capacity Charge not tradeable
- Increased cost led to change to Distillate firing
 - Reduced capital cost (cf GCC) but reduced inframarginal rent too

2007 Values²

Net Power Output (Lifetime)	182 MW	
Capital Cost	€81 million	
Amortisation Period	15 Years	
WACC	7.83%	
Annualised Capital Cost	€9.37 million	
Fixed O&M Costs	€6.11 million	
Annualised Cost of Capacity	€85.04/kW	

2. Fixed Cost of New Entrant Peaking Plant for CPM – Final Decision paper: May 2007

- Inframarginal rent:
 - Energy
 - Determined through multiple Plexos runs
 - Validated Plexos model and data
 - Determine SMPs without BNE
 - Determine running regime with BNE
 - Ancillary Service
 - Based on Eirgrid rates
 2007 Values

BNE Characteristics

Minimum Stable Capacity Incremental Heat Rate Slope

Run Up Rate

Run Down Rate Minimum Up Time

Minimum Down Time Start-Up Energy **VOM Costs**

20MW

10.588GJ/MWh at MCR

10-20MW/min

10MW/min plus 6-8min Idle Time

25 mins 30 mins 650GJ (LHV) 1.39 cents/kWh

Energy Inframarginal Rent	€14.19/kW
Ancillary Service Revenue	€6.12/kW
Final BNE Cost	€64.73/kW

CPM Key Features

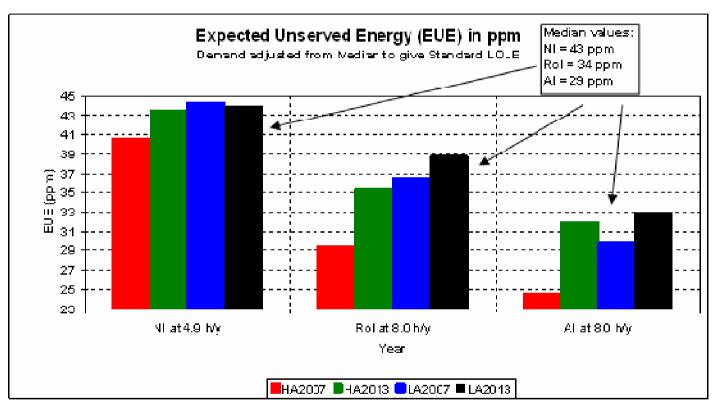
- Fixed amount of cash (the Pot) per year
- Pot determined as Price x Volume
 - Price: Best New Entrant Peaking Plant fixed costs
 - Volume: Capacity required to meet adequacy standard
- Pot allocated for Generator Payments:
 - Fixed (year ahead)
 - Variable (month ahead)
 - Ex-Post (month end)
- Generators paid when available
- Pot allocated for Supplier Charges:
 - Based on demand
- Suppliers charged on consumption


Pot Determination – Volume

- Methodology:
 - Based on TSO Adequacy Assessment process
 - Create a demand forecast
 - Create generation probability distribution
 - Derive Loss of Load Probability (LOLP) per Trad. Period
 - Loss of Load Expectation_{year} (LOLE) = \sum_{year} LOLP
 - Compare LOLE to Security Standard ⇒ Deficit/Surplus
 - Requirement = Installed Capacity ± Deficit/Surplus

Capacity Requirement - Methodology

Capacity Requirement -Inputs


- Demand Forecast From TSOs

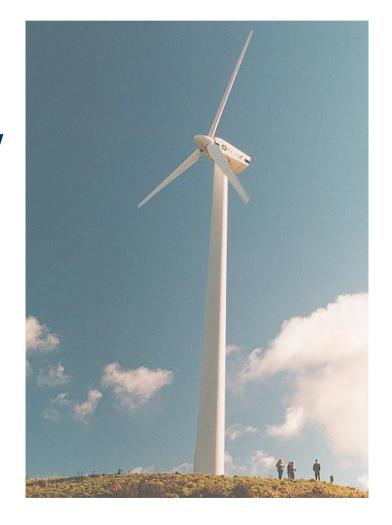
Unit Capacities

- Direct from Generators
- Scheduled Outages Historic Averages
- Adequacy Standard
- Forced Outages
- Wind Power

Adequacy Standard

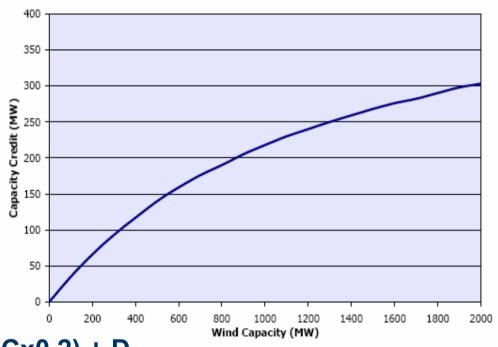
- Std > 8h/yr leads to greater EUE compared with current
- Select 8h/yr to give security/cost comparable with current

Forced Outage Probabilities


- Existing FOPs vary between NI and Rol
 - FOPs in NI ~ 4%
 - FOPs in Rol ~ 14%
- Incentivise Availability improvement (Objective)
- NI Average FOP 4.23% applied to all units*

^{*} Exception is Interconnectors – not a "true" generator

Treatment of Wind


- Wind generation reliant on fuel – very high FOPs
- Wind penetration set to grow
- Forecast output and adjust demand (i.e. not in generation "stack")
- Apply Capacity Credit when calculating Capacity
 Requirement

Treatment of Wind

- All-island Wind 2007
 ~1140MW
- Capacity Credit ~20%

Capacity Requirement = IC + (WICx0.2) + D

Where:

IC = Installed Capacity (market registered only) excluding Wind

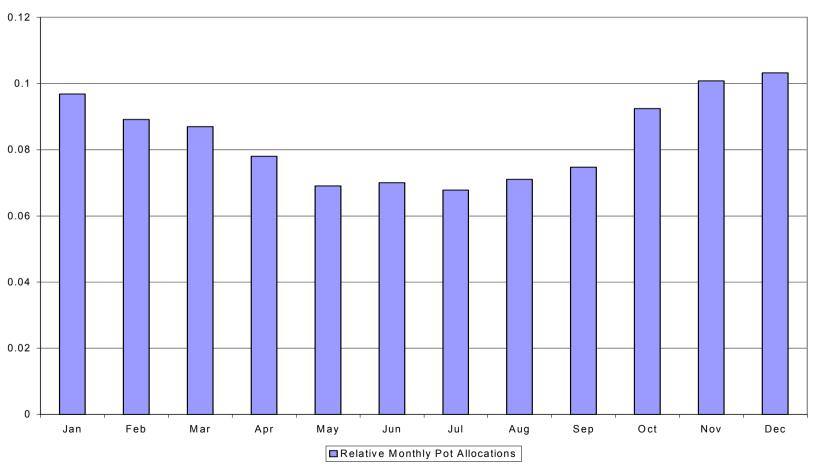
WIC = Installed Capacity of Wind (market registered only)

D = Difference = Deficit or Surplus (where Surplus is negative)

Total Capacity Requirement for 2007 – 6960MW

Pot Determination – Monthly Values

- Annual Pot = BNE Price x Capacity Requirement
- For 2007 ~ €450.5 million
- Annual Pot split into Monthly Pots, weighted by peak to trough demand:

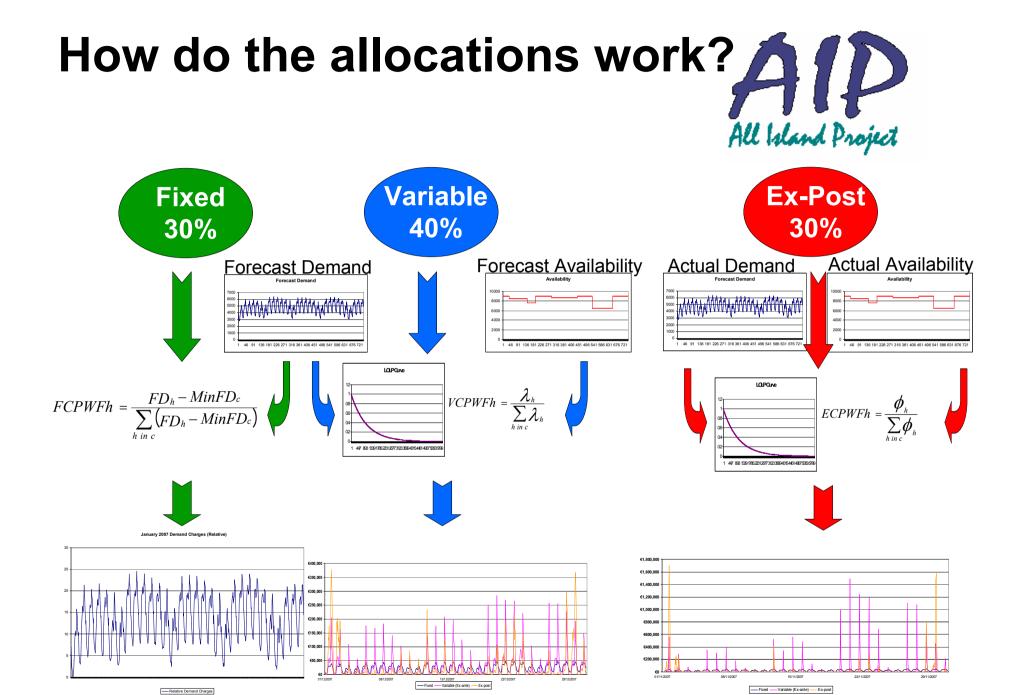

$$WF_c = \frac{P_c - MinFD_y}{\sum_{c \text{ in } y} (P_c - MinFD_y)}$$

- Where:
 - WF_c is the Weighting Factor for the Capacity Period (Mth);
 - P_c is the peak demand in the Capacity Period; and
 - MinFD_y is the minimum demand in the year

Pot Determination – Monthly Values

Majority of cash into high demand periods

CPM Key Features


- Fixed amount of cash (the Pot) per year
- Pot determined as Price x Volume
 - Price: Best New Entrant Peaking Plant fixed costs
 - Volume: Capacity required to meet adequacy standard
- Pot allocated for Generator Payments:
 - Fixed (year ahead)
 - Variable (month ahead)
 - Ex-Post (month end)
- Generators paid when available
- Pot allocated for Supplier Charges:
 - Based on demand
- Suppliers charged on consumption

Why Have Three?

- Need to meet several Objectives
- Objectives sometimes conflicting
- Fixed: **30%**
 - Provides certainty to Generators, but
 - Weak incentives to respond to shortages
- Variable: 40%
 - Still provides degree of certainty to Generators
 - Improves forecast of likely shortages, but
 - No response to un-forecast shortages
- Ex-Post: **30%**
 - Provides short-term response incentive, but
 - Payment incidence uncertain

A balance needs to be struck

CPM Key Features

- Fixed amount of cash (the Pot) per year
- Pot determined as Price x Volume
 - Price: Best New Entrant Peaking Plant fixed costs
 - Volume: Capacity required to meet adequacy standard
- Pot allocated for Generator Payments:
 - Fixed (year ahead)
 - Variable (month ahead)
 - Ex-Post (month end)
- Generators paid when available
- Pot allocated for Supplier Charges:
 - Based on demand
- Suppliers charged on consumption

Payments depend on available capacity* and price

```
TSC Version 2
4.123 	 CPuh = \frac{CPGPFuh}{CPEALFuh} \times \frac{(VCGPh + FCGPh + ECGPh)}{(VCGPh + FCGPh)}
Where
```

- 1. CPuh is the Capacity Payment for unit u in Trading Period h
- 2. CPGPFuh is the Capacity Payments Generation Price Factor for u in h
- 3. CPEALFuh is the Loss-Adjusted Capacity Payments Eligible Availability for u in h
- 4. VCGPh is the Variable Capacity Payments Generation Price in h
- 5. FCGPh is the Fixed Capacity Payments Generation Price in h
- 6. **ECGPh** is the Ex-Post Capacity Payments Generation Price in h
- Availability
- Price
- Allocations (Variable / Fixed / Ex-Post)

^{*} Based on production for some unit types (see later)

Capacity Payments depend on Price

TSC Version 2
$$4.115$$

$$CPGPFuh = \frac{\left(MSQuh \times CPPFh\right) + \sum_{i} \left(UCOQuhi \times Max\left\{\frac{VOLL - UCOPuhi}{VOLL}, 0\right\}\right)}{MSQuh + \sum_{i} UCOQuhi}$$
Where

- 1. CPGPFuh is the Capacity Payments Generation Price Factor for unit u in Trading Period h
- 2. MSQuh is the Market Schedule Quantity for u in h
- 3. CPPFh is the Capacity Payments Price Factor in h
- 4. UCOQuhi is the Unscheduled Capacity Offer Quantity for Price Quantity Pair i for u in h
- 5. *VOLL is the Value of Lost Load*
- 6. UCOPuhi is the Unscheduled Capacity Offer Price for i for u in h
- A unit with Price > VOLL has no value
- A unit with Price ~ VOLL has little value
- As unit Price approaches VOLL, value decreases

$$CPPFh = Max \left\{ \left(\frac{(VOLL - SMPh)}{VOLL} \right), 0 \right\}$$

Where

- 1. CPPFh is the Capacity Payments Price Factor for Trading Period h
- 2. VOLL is the Value of Lost Load
- 3. SMPh is the System Marginal Price for Trading Period h
- Avoids payments to Generators exceeding VOLL

Price €/MWh

VOLL

supply

Quantity (MW)

Loss of Load Probability = Probability Supply < Demand:

Probability weighted Price = SMP x
$$(1 - LOLP) + VOLL x LOLP$$

= SMP + LOLP x $(VOLL - SMP)$

Payments depend on available capacity* and price

TSC Version 2 $4.123 CPuh = CPGPFuh \times \frac{CPEALFuh}{CPEALFuh} \times (VCGPh + FCGPh + ECGPh)$

Where

- 1. CPuh is the Capacity Payment for unit u in Trading Period h
- 2. CPGPFuh is the Capacity Payments Generation Price Factor for u in h
- 3. CPEALFuh is the Loss-Adjusted Capacity Payments Eligible Availability for u in h
- 4. VCGPh is the Variable Capacity Payments Generation Price in h
- 5. FCGPh is the Fixed Capacity Payments Generation Price in h
- 6. ECGPh is the Ex-Post Capacity Payments Generation Price in h
- Availability
- Price
- Allocations (Variable / Fixed / Ex-Post)

^{*} Based on production for some unit types (see later)

- Generators paid against Loss-Adjusted Capacity Payments Eligible Availability (CPEALFuh)
- Mostly = APuh x TLAFuh x TPD
 - Where:
 - APuh is the Availability Profile of Unit u in Trading Period h
 - TLAFuh is the Transmission Loss Adjustment Factor of u in h
 - TPD is the Trading Period Duration
- But TSC Section 5 (Special Units) identifies other cases...

Generator Payments

TSC Version 2, Table 5.1

Category	Form of Dispatch Instruction	Dispatch Quantity (DQuh)	Availability Profile (APuh)	Market Schedule Quantity (MSQuh)
Autonomous Generator Units	N/A	Actual Output (AOuh)	Actual Output (AOuh)	Actual Output (AOuh)
Variable Price Taker Generator Units	Run	Actual Output (AOuh)	Actual Output (AOuh)	Actual Output AOuh
Variable Price Taker Generator Units	Unit constrained down in Dispatch Instructions to remain below a level of Output of X MW	Time weighted average of (Outturn Availability when not constrained down below X MW, Min{X MW, Outturn Availability} when constrained down below X MW)	Max {Actual Output (AOuh), Time weighted average of Outturn Availability}	Max {Actual Output (AOuh), Time weighted average of Outturn Availability}
Variable Price Maker Generator Units	Run	Actual Output (AOuh)	Actual Output (AOuh)	Calculated by the MSP Software
Variable Price Maker Generator Units	Unit constrained down in Dispatch Instructions to remain below a level of Output of X MW	Time weighted average of (Outturn Availability when not constrained down below X MW, Min{X MW, Outturn Availability} when constrained down below X MW)	Max (Actual Output (AOuh), Time weighted average of Outturn Availability)	Calculated by the MSP Software
Predictable Price Taker Generator Units	Any	As set out in Section 4	As set out in Section 4	Minimum of Nominated Quantity (NQuh and Availability Profile (APuh)



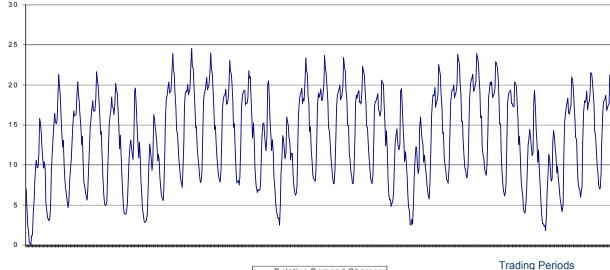
- Number of Special Cases
- Mainly Actual Output
- Interconnector Units:
 - Dispatch Quantity
 - Availability and price
- Energy Ltd./Pump. Stge:
 - Allocate "excess" to peak LOLP
- Demand Side Units:
 - Demand Reduction

Generator Payments – Summary

Payments depend on available capacity* and price

CPM Key Features

- Fixed amount of cash (the Pot) per year
- Pot determined as Price x Volume
 - Price: Best New Entrant Peaking Plant fixed costs
 - Volume: Capacity required to meet adequacy standard
- Pot allocated for Generator Payments:
 - Fixed (year ahead)
 - Variable (month ahead)
 - Ex-Post (month end)
- Generators paid when available
- Pot allocated for Supplier Charges:
 - Based on demand
- Suppliers charged on consumption


Allocation for Charges

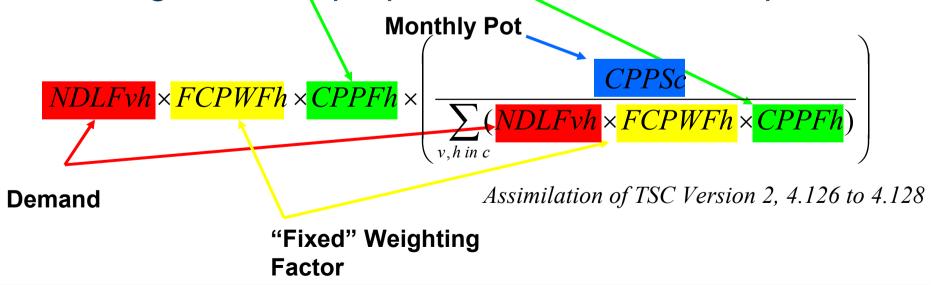
Allocated at start of year as for Fixed

TSC Version 2
4.105
$$FCPWFh = \frac{FD_h - MinFD_c}{\sum_{h \text{ in } c} (FD_h - MinFD_c)}$$

- Capacity Period charge known stability/certainty
- Incentivises reduction in consumption during peaks

CPM Key Features

- Fixed amount of cash (the Pot) per year
- Pot determined as Price x Volume
 - Price: Best New Entrant Peaking Plant fixed costs
 - Volume: Capacity required to meet adequacy standard
- Pot allocated for Generator Payments:
 - Fixed (year ahead)
 - Variable (month ahead)
 - Ex-Post (month end)
- Generators paid when available
- Pot allocated for Supplier Charges:
 - Based on demand
- Suppliers charged on consumption


Supplier Charges

• Trading Period allocations scaled in same way as for Generator payments

$$\frac{CPPFh}{VOLL} = Max \left\{ \left(\frac{\left(VOLL - SMPh \right)}{VOLL} \right), 0 \right\}$$

- Suppliers charged based on consumption
- Charges reflect proportion of total consumption

Agenda

- CPM Objectives
- CPM Design
- Annual Capacity Payment Sum
- Payments to Generators
- Charges to Suppliers
- Summary

Summary

- The CPM is designed to meet a number of Objectives:

 Capacity Adequace

 - Efficient Long-Term Signals
 - Price Stability
 - Minimise Susceptibility to Gaming
 - Fairness
 - Simplicity
- Chosen mechanism is a Fixed Revenue mechanism.....

Summary - continued

- Fixed amount of cash per year
- Pot determined as Price x Volume
 - Best New Entrant Peaking Plant fixed costs
 - Capacity required to meet adequacy standard
- Pot allocated for Generator Payments:
 - Fixed (year ahead)
 - Variable (month ahead)
 - Ex-Post (month end)
- Generators paid when available: proportional
- Pot allocated for Supplier Charges:
 - Based on demand
- Suppliers charged on consumption: proportional

Agenda

- CPM Objectives
- CPM Design
- Annual Capacity Payment Sum
- Payments to Generators
- Charges to Suppliers
- Summary
- Parameters for 2007/2008

CPM Parameters and Timetable – "On-going"

- Regulatory Authorities determine (Y-4mths):
 - Annual Capacity Payment Sum (ACPS_Y)
 - Capacity Period Payment Sums (CPPS_c)
 - Fixed Capacity Payments Proportion (FCCP_Y)
 - Ex-Post Capacity Payments Proportion (ECPP_Y)
 - [and therefore the Variable Capacity Payments Proportion]
 - Value of Lost Load (VOLL)
 - Flattening Power Factor (FRF_Y)*
- Market Operator publishes above ~Y-2mths

Consultation on BNE technology in Spring

^{*} SO recommends value to Regulatory Authorities at this time

CPM Parameters - 2007

- Capacity Requirement 6960MW
- BNE Peaker Fixed Costs €64.73/kW
- ACPS $_{Y} = \text{€}450,517,348$
- $FCPP_{Y} = 0.3$
- ECPP $_{Y}$ = 0.3 [VCPPY = 0.4]
- VOLL Consultation
- $FPF_{Y} = 0.35$
- CPPS_c

Month	Amount
Jan	€42,277,947
Feb	€40,677,812
Mar	€40,532,345
Apr	€33,990,746
May	€32,088,658
Jun	€30,501,747
Jul	€30,722,151
Aug	€32,661,709
Sep	€32,685,953
Oct	€38,969,679
Nov	€47,131,249
Dec	€48,277,352

CPM Parameters – 2008

- Capacity Requirement 7200MW*
- BNE Peaker Fixed Costs €79.16/kW*
- ACPS_Y = €569,952,000*
- $FCPP_{Y} = 0.3$
- ECPP $_{Y}$ = 0.3 [VCPPY = 0.4]
- VOLL Consultation
- $FPF_{Y} = 0.35$
- CPPS*co

Month	Amount
Jan	€53,344,047
Feb	€51,602,752
Mar	€51,019,670
Apr	€43,050,000
May	€40,598,406
Jun	€39,047,938
Jul	€39,591,264
Aug	€41,425,322
Sep	€41,255,698
Oct	€49,447,999
Nov	€59,143,062
Dec	€60,425,842

^{*} Indicative Values. Final value to be published August 2007

End

Thank you for your attention

John Parsonage

Ledian House 45, Bedford Row London WC1R 4LN

Tel: +44 207 092 1795 Fax: +44 207 092 1770 Mob:+44 797 061 5309